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Preface

The spatial dynamics of the web of interactions between organisations conducting joint
Research and Development (R&D) activities — referred to as R&D networks — has
recently evolved to one of the ‘hot topics’ in modern research of the Geography of
Innovation literature. After the era of mainly focusing on direct, dyadic relations
between actors performing joint R&D, emphasis is nowadays increasingly shifted to
a network perspective. The latter extends the focus on dyads to the structure of indirect
relations in a network of actors and its systemic implications. Recognising the impor-
tance of indirect ties and their potential role as channels for knowledge and information
flows, the structure of these indirect ties is of major interest to understand and describe
knowledge diffusion processes. Special interest is devoted to the interplay between
spatial effects and structural effects at the network level in explaining the development
of collaborative R&D and knowledge production activities.

In this context, network analytic methods and tools have increasingly come into
play for the investigation of the spatial dimension of R&D interactions. By this, the
field has become much more interdisciplinary, particularly in methodological terms.
The more traditional spatial analysis techniques, spatial econometric approaches and
spatial interaction models — which are without doubt still essential to investigate the
spatial character of R&D networks — are increasingly augmented, sometimes merged
with network analytic approaches, mainly comprising a set of tools stemming from
graph theory. The realms of Complex Network Analysis (CNA) and Social Network
Analysis (SNA) are essential to meet the aspiration of taking into account network
structural effects that influence the spatial structure of R&D collaborations. In recent
spatial studies of R&D networks, such network analytic methods are often combined
with most recent advances in spatial analysis and spatial econometric modelling, for
instance, by relating network structural effects — as captured by network analytic
indicators — to spatial effects within a spatial econometric modelling framework.

In essence, the present volume explicitly reflects this recent development in spatial
studies of R&D collaborations and networks. It constitutes a joint product of scholars
analysing the geography of R&D networks from different angles, from distinct
disciplinary backgrounds, using a diverse set of methodologies and producing a
range of policy conclusions in diverse spatial and sectoral environments. By this, it
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represents — on the one hand — a quite unique collection of articles presenting
methodological advancements for the analysis of R&D networks from different
disciplines and — on the other hand — a distinguished anthology of novel empirical
contributions on the relationship between geography and network structures as well as
the impact of such networks on knowledge creation and innovative performance of
firms, regions or countries.

The initial stimulus for the preparation of this volume was given at the congress of
the European Regional Science Association (ERSA) in Bratislava in 2012. The
emphasis on the geography of networks and R&D collaborations has been
highlighted in various presentations and sessions of the congress. This volume is
mainly the outgrowth of works that have been presented there, extended by an
exclusive selection of invited works. The contributors come from all over the world
and from a range of different disciplines, including economists, physicists, geogra-
phers and sociologists. They provide fresh ideas on the analysis of the geography of
networks and R&D collaborations, both from a theoretical and a methodological
perspective.

At this point, I would like to thank Folke Snickars and Manfred M Fischer for
suggesting to propose such a volume to the Advances in Spatial Science series of
Springer. Further, my warmest gratitude goes to all contributors of the volume, not
only for their fine contributions in their chapters, but also for their motivating
encouragement, stimulating discussions and smooth collaboration. My thanks also
go to Barbara Fess, senior editor for economics and political science at Springer, for
her ongoing support during the production process, and to Ramya Prakash, project
manager at SPi Content Solutions — SPi Global, for her fine editing and production
work.

Vienna, Austria Thomas Scherngell
December 2013
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Part I
Editorial Introduction



Chapter 1
The Networked Nature of R&D in a Spatial
Context

Thomas Scherngell

1.1 Rising Interest in the Geography of R&D Networks

Starting with the seminal works of Feldman (1994) and Audretsch and Feldman
(1996), the Geography of Innovation has — without doubt — evolved to one of the
main research fields in Economic Geography and Regional Science. A great deal of
theoretical and empirical literature has been followed in this area, drawing on
significant methodological advancements in spatial analysis, spatial statistics and
spatial econometrics as well as on the availability of novel, systematic information
sources on the innovative activity of firms, regions and countries. The Geography of
Innovation literature describes the role of proximity and location for innovative
activity. It is emphasised that spatial studies of innovation provide pivotal anchor
points for understanding and explaining the space-economy (see Feldman and
Kogler 2010).

Over the past decade, we have observed an increasing research interest within
the Geography of Innovation literature on the spatial dimension of networks and
collaborations between actors conducting joint Research & Development (R&D)
activities. This subfield has meanwhile become an essential and fascinating domain
for advanced research on the spatial and temporal evolution of innovation systems
at different spatial scales. Special emphasis is placed on interactions between
organisations performing joint R&D, for instance in the form of collaborative
research projects, joint conferences and workshops, or shared R&D resources in
the form of labour and capital. Such interactions have attracted a burst of attention
in the last decade, both in the scientific and in the policy sector (see, for instance,
Autant-Bernard et al. 2007). With the focus on networks and R&D collaborations,
the Geography of Innovation literature clearly has become more interdisciplinary —
in particular in methodological terms — involving a multiplicity of scientific fields

T. Scherngell (B<)
Innovation Systems Department, AIT Austrian Institute of Technology, Vienna, Austria
e-mail: thomas.scherngell@ait.ac.at

T. Scherngell (ed.), The Geography of Networks and R&D Collaborations, Advances 3
in Spatial Science, DOI 10.1007/978-3-319-02699-2_1,
© Springer International Publishing Switzerland 2013
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such as economics, geography, social sciences, physics and complex systems
research (see Reggiani and Nijkamp 2009).

The research focus on the geography of R&D networks has been triggered by
various considerations in theoretical and empirical literature in Economic Geogra-
phy and Regional Science in the 1980s and 1990s (see, e.g. Clark et al. 2000). When
we recapitulate the development of this literature stream, two arguments for the
focus on networks are central:

First, innovation, knowledge creation and the diffusion of new knowledge are
the key vehicles for sustained economic growth of firms, industries or regions, and,
thus, are essential for achieving sustained competitive advantage in the economy
(see, e.g., Romer 1990; Lucas 1988; Grossman and Helpman 1991). The theory of
endogenous growth and the geography-growth synthesis both consider that eco-
nomic growth and spatial concentration of economic activities emanate from
localised knowledge diffusion processes (Autant-Bernard et al. 2007). The funda-
mental neoclassical assumption of constant or decreasing returns to scale is
contested, assuming that knowledge may be subject to increasing returns because
of the externalities inherent in its production and use. In this respect, the value of the
geographically localised knowledge base increases due to network effects and the
characteristics of knowledge. Network effects come into play, since a diversified set
of local actors may gain access to new knowledge. The properties of knowledge
crucial for this argument are non-excludability — knowledge is accessible to actors
that invest in the search for it — and non-rivalry — knowledge can be exploited by
different innovating actors simultaneously (see Feldman and Kogler 2010).

Second, interactions, research collaborations and networks of actors have
become an essential element for successful innovation (see, for instance, Fischer
2001). Long viewed as a temporary, inherently unstable organisational arrange-
ment, R&D networks have become the norm rather than the exception in modern
innovation processes (Powell and Grodal 2005). Organisations must collaborate
more actively and more purposefully with each other in order to cope with increas-
ing market pressures in a globalizing world, new technologies and changing
patterns of demand. In particular, firms have expanded their knowledge bases into
a wider range of technologies (Granstand 1998), which increases the need for
different types of knowledge, so firms must learn how to integrate new knowledge
into existing products or production processes (Cowan 2004). It may be difficult to
develop this knowledge alone or acquire it via the market. Thus, firms form
different kinds of co-operative arrangements with other firms, universities or
research organisations that already have this knowledge to access it faster.

The fundamental importance of networks for generating innovations is also
reflected in the various systems of innovation concepts (see Lundvall 1992
among many others). In this conception, the sources of innovation are often
established between firms, universities, suppliers and customers. Network arrange-
ments create incentives for interactive organisational learning, leading to faster
knowledge diffusion within the innovation system and stimulating the creation of
new knowledge or the combination of pieces of existing knowledge in a new way.
Participation in innovation networks reduces the high degree of uncertainty present
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in innovation processes, providing fast access to different kinds of knowledge, in
particular tacit knowledge (see, for example, Kogut 1988).

Science, Technology and Innovation (STI) policies have recently followed this
trend, shifting emphasis to the support of networks and collaborative arrangements
between innovating actors, in particular between universities and firms. At the
European level, the Framework Programmes (FPs) for Research and Technological
Development (RTD) are the prime examples of policy programmes to support
collaborative knowledge production across Europe. This has led to the establish-
ment of a pan-European network of actors performing joint R&D (see, e.g.,
Scherngell and Barber 2009). From this background, not only the scientific domain,
but also the policy sector shows increasing interest in network structures and
network dynamics driven by public funds. In a European policy setting, particular
interest is devoted to the geography of such networks, bearing in mind the overall
policy goal of an integrated European Research Area (ERA).

The focus of this volume is on the geographical dimension of interactions in
networks and R&D collaborations. While early contributions to the Geography of
Innovation literature highlight the localised character of knowledge production and
diffusion, one of the most fundamental questions of current research is how the
structure of formal and informal networks modifies and influences the spatial and
temporal diffusion of knowledge (see Autant-Bernard et al. 2007). As highlighted
by Reggiani and Nijkamp (2009), the foundation for an interpretation of the
economy as an interdependent complex set of economic relationships has long
been underpinned by the “first law of geography” (Tobler 1970), stipulating that
everything in space is related to everything else, but nearby things are more related
than distant things. However, advances in network theory may challenge or — at
least — extend this statement, assuming that in certain network typologies distant
things may be more related than near things.

In the Geography of Innovation literature, such considerations are referred to as
the local buzz vs. global pipelines nature of knowledge creation. This concept
describes the interplay between the interaction behaviour of localised innovating
actors, mainly driven by spatial proximity, and the access and transfer of more
distant knowledge, mainly distributed via alternative channels, often in more
formalised form as, for instance, by networks of joint R&D projects between
firms providing complementary, highly specialised knowledge (Bathelt
et al. 2004). Assuming that the relative importance of such geographically dis-
persed and more distant knowledge sources — transferred over network channels —
increases, certain network structures may be considered as essential determinants of
how knowledge diffuses in geographical space, and why some actors, regions or
countries benefit more than others due to certain network positions.

However, these theoretical considerations rest on a small base of empirical
evidence (see Feldman and Kogler 2010), which may be related to methodological
limitations as well as to a lack of data and insufficient information on different types
of R&D networks and collaboration patterns. In methodological terms, we need to
combine existing spatial analytic tools with methods coming from sociology, in
particular Social Network Analysis (SNA) (see Ter Wal and Boschma 2009), or
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from physics and complex systems research (see, e.g., Reggiani and Nijkamp
2009). However, until now it remains in many aspects unclear in which way and
how these different methodological streams can complement each other in a
meaningful way.

1.2 Motivation, Objective and Structure of the Book

From this perspective, the motivation of this book is to bridge the research gap
discussed above. There are two objectives: First, the volume aims to advance the
theoretical basis and the methodological toolbox for the investigation of the geog-
raphy of networks and R&D collaborations. Second, it aims to provide novel
empirical evidence on spatial network structures and the impact of R&D networks
on knowledge creation and diffusion which is particularly to be interpreted in
respect to current European STI policies. In this sense, the books brings together
a selection of articles providing novel theoretical and empirical insights into the
geographical dynamics of networks and R&D collaborations, using new, systematic
data sources, and employing cutting-edge spatial analysis, spatial econometric and
network analysis techniques. It simultaneously provides a collection of high-level
recent research on the spatial dimension of R&D collaboration networks, and
contributes to the recent debate in Economic Geography and Regional Science on
how the structure of formal and informal networks modifies and influences the
spatial and temporal diffusion of knowledge.

Given the focus of the book on the geography of networks and R&D collabora-
tions, with the aim to methodologically advance analytic approaches for the
analysis of such networks in a spatial context, and to provide novel empirical
evidence on structure and impact of R&D networks, the volume comprises three
major parts. Initially, Part II shifts attention to methodological advancements from
an interdisciplinary perspective, while Parts III and IV are two thematic sections
focusing on structure and impact of R&D networks in a STI policy context.

Part 11, entitled Analytic advances and methodology, comprises a selection of
articles providing insight into novel and advanced methodologies for the analysis of
R&D networks — formally defined as a set of nodes, most often representing
organisations, inter-linked by a set of edges, most often representing joint R&D
activities — in a spatial context. One essential element of this section is to bring
together methodological approaches from different disciplines, ranging from
advanced spatial analysis tools to network analysis approaches coming from statis-
tical physics, sociology and complex systems research. Part II highlights different
modelling approaches for investigating the spatial structure of R&D networks and
how it changes over time. From this perspective, the section significantly addresses
aresearch issue raised by many economic geographers and regional scientists in the
recent past, inspiring a look at alternative methodological and analytical approaches
coming from related disciplines for the spatial analysis of networks, such as, for
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instance, Social Network Analysis (SNA) techniques (see, e.g., Bergman 2009; Ter
Wal and Boschma 2009).

Part 111, entitled Structure and spatial characteristics of R&D networks, shifts
emphasis to the empirical analysis of real world R&D networks from a geograph-
ical perspective, employing advanced methods of spatial analysis, spatial econo-
metrics and network analysis, some of them introduced in Part II in an abstract
manner. By this, the articles gathered in Part III provide new insight into the
research questions raised above, as, for instance, on the effects of different forms
of proximity on the constitution of R&D networks at different spatial scales and in
different economic sectors of activity. Another common focus of the articles in this
section is that they use novel, systematic data and information sources on different
kinds of R&D networks, such as, for instance, project-based R&D networks
constituted under the heading of the European Framework Programmes (FPs).

Part 1V, entitled Impact of R&D networks and policy implications, puts empha-
sis on the crucial question on how structure and dynamics of R&D networks affects
knowledge creation and inventive behaviours of innovating actors. Since modern
STI policies have shifted their focus on supporting such networks, this section
provides important implications in a STI policy context, particularly at the Euro-
pean level. This is of crucial importance, since the realisation of an integrated ERA
is one of the major goals of the STI policy strategy of the European Commission
(see, e.g., Hoekman et al. 2013). Networks of actors performing joint R&D should
span the territory of the EU — stimulating the circulation of knowledge and
researchers in a Europe-wide system of innovation — and, thus, the analysis of the
spatial dimension of European R&D networks shows direct European policy
relevance. In this sense, the articles gathered in Part IV address the essential points:
how to interpret results from empirical investigations of spatial R&D networks in a
STI policy context, and how potential policy implications and measures may be
derived.

1.3 Overview of the Chapters

As mentioned in the previous section, Part II of the volume focuses on analytic and
methodological advances — from an interdisciplinary perspective — for the investi-
gation of R&D networks and R&D collaborations in a spatial context. After this
introductory chapter, Part II begins with a contribution by Autant-Bernard and
Hazir (Chap. 2) focusing on different modelling approaches and underlying con-
ceptions for network formation in a geographical context. The article provides a
review — as a reasonable starting point for Part IT — on recent works that investigate
network formation in space and time but reveal a high variation in terms of
methodological and analytical approaches. In doing so, the authors discuss the
different aspects of the relationship between geography and networks, and discuss
in some detail the distinct methodological approaches and their capability to
investigate this relationship. Chapter 3 authored by De Montis, Caschili and Chessa
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shifts attention to a complex systems research perspective for investigating spatio-
temporal network dynamics, in particular for spatial systems with a very large
number of nodes and vertices. The authors present a state-of-the art summary in the
field of complex network analysis, laying special emphasis on the issue of com-
munity detection in networks which is of crucial interest when describing R&D
network structures (see also Chap. 9 of this volume by Barber and Scherngell).
Communities, defined as homogenous, densely connected sub-networks, are a key
element for understanding the network structure as a whole. The authors demon-
strate this by means of a case study employing a network community detection
approach to study the problem of regionalisation on the island of Sardinia (Italy).

Part II continues with two contributions introducing two distinct analytical
approaches for the investigation of spatial network structures that have initially
been applied mainly in an a-spatial context. Initially, Broekel and Hartog (Chap. 4)
focus on exponential random graph models (ERGM) to analyse the determinants of
cross-region R&D collaboration networks. The authors lay special emphasis on
advantages and disadvantages of this approach in comparison to a spatial interac-
tion modelling perspective that is often used to disentangle the influence of differ-
ent types of proximities on R&D network structures (see, e.g., Scherngell and
Barber 2009). The solidity of the ERGM approach is demonstrated by means of
an illustrative example focusing on the structure of cross-region R&D networks of
the German chemical industry. After that, Sebestyén and Varga (Chap. 5) develop a
novel index, labelled Ego Network Quality (ENQ), for measuring the quality of
network position and node characteristics in spatial R&D networks. The authors
demonstrate that the ENQ is an integrated measure for the network position of a
specific node in a spatial context, very much resembling to the solution applied in
the well-established index of eigenvector centrality in an a-spatial context. Robust-
ness and weighting schemes of the index are tested via simulation and econometric
techniques.

Chapter 6, authored by Chun, discusses the notion of network autocorrelation,
referring to a situation when network links from a particular origin may be spatially
autocorrelated with other flows that have the same origin, and, similarly, network
links into a particular destination may be correlated with other flows that have the
same destination. The author argues that this invalidates the independence assump-
tion of network flows, raising the need for a proper modelling method which can
account for network autocorrelation. The eigenvector spatial filtering method is
presented as an effective way to incorporate network autocorrelation in linear
regression and generalised linear regression models. Chun illustrates these methods
with applications to interregional commodity flows and interstate migration flows
in the U.S.

Part II closes with a contribution by Crespo, Suire and Vicente (Chap. 7) on the
assortativity and hierarchy in localised R&D collaboration networks. By this, the
authors focus on two important structural properties and present a combination of
two SNA measures, degree distribution and degree correlation, to study whether
such localised networks are allowed to avoid technological lock-in.
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The contributions gathered in Parts II and III comprise a selection of articles
providing novel empirical evidence on real world R&D networks from a spatial
perspective. Initially Part III shifts attention to the investigation of spatial network
structures and dynamics. The section opens with a contribution by Lata, Scherngell
and Brenner (Chap. 8) that puts emphasis on observing integration processes in
European R&D from a network perspective. The authors investigate co-patent and
project based R&D networks, and estimate the evolution of separation effects over
the time period 1999-2006 that influence the probability of cross-region collabo-
rations in these distinct networks. They use Poisson spatial interaction models
accounting for spatial autocorrelation among network links. Chapter 9, authored
by Barber and Scherngell, employs community detection (see Chap. 3 of this
volume) to characterise the structure of the European R&D network using data on
R&D projects funded by the fifth European FP (FP5). Communities are subnet-
works whose members are more tightly linked to one another than to other members
of the network. The identified communities are analysed with respect to their spatial
distribution and by means of spatial interaction models.

Chapter 10, authored by Leitner, Stehrer and Dachs, focus on the global R&D
network, proxied by R&D investment flows between countries. The authors analyse
internationalisation patterns of business R&D for OECD countries and identify
specific home- and host-country characteristics that are conducive or obstructive to
cross-border R&D expenditure of foreign affiliates.

Chapters 11, 12 and 13 investigate spatial aspects of different networks consti-
tuted under the heading of the FPs at an organisational and R&D project specific
level. Initially, Reinold, Paier and Fischer (Chap. 11) explore determinants of inter-
organisational knowledge generation — proxied by joint publications or patents
resulting from joint FP projects — by means of a binary response model using
novel data from a survey among FP5 participants. Chapter 12 by Hazir presents an
empirical investigation on the formation of multilateral FP collaboration networks
in the Biotechnology field employing exponential random graph models (ERGM).
The author focuses on the question how geography and heterogeneity in institution
types affect the way organisations form R&D networks. Chapter 13, authored by
Vicente, Balland and Suire, completes Part IV adopting a SNA perspective to
analyse collaborative projects funded in FP5 and FP6. They study the properties
both of the network of organisations and the network of collaborative projects,
focusing on the particular case of Global Navigation Satellite Systems (GNSS) in
Europe.

Part IV turns to the impact of R&D networks on knowledge creation and
inventive behaviours of organisations, and its consequences for STI policy. As a
starting point, the contribution of Hoekman and Frenken (Chap. 14) frames the
geography of scientific research networks laying special emphasis on empirical
studies that evaluate policy efforts to support the creation of ERA. The authors
introduce a logic of proximity, intended to provide researchers with a way to
coordinate their networks, and a logic of stratification, intending to provide path-
ways for researchers to get involved in networking. The chapter presents an
overview of recent empirical findings to illustrate the interplay between proximity


http://dx.doi.org/10.1007/978-3-319-02699-2_8
http://dx.doi.org/10.1007/978-3-319-02699-2_9
http://dx.doi.org/10.1007/978-3-319-02699-2_3
http://dx.doi.org/10.1007/978-3-319-02699-2_10
http://dx.doi.org/10.1007/978-3-319-02699-2_11
http://dx.doi.org/10.1007/978-3-319-02699-2_12
http://dx.doi.org/10.1007/978-3-319-02699-2_13
http://dx.doi.org/10.1007/978-3-319-02699-2_11
http://dx.doi.org/10.1007/978-3-319-02699-2_12
http://dx.doi.org/10.1007/978-3-319-02699-2_13
http://dx.doi.org/10.1007/978-3-319-02699-2_14

10 T. Scherngell

and stratification of European R&D networks, and discusses potential implications
for future ERA policies. Chapter 15 by Wanzenbock and Heller-Schuh connects
very well to this discussion, as it stresses the importance of specific network
positions to gaining access to knowledge located further away in geographical
space. They analyse the position of regions in the European network of R&D
collaboration within the FPs in the time period 1998-2006. By means of a panel
version of the Spatial Durbin Model (SDM), the authors identify determinants that
push a region in a specific, favourable network position to gain access to region-
external knowledge.

Chapters 16 and 17 are among the first contributions that aim to establish a direct
link between network structures and network impact in terms of knowledge crea-
tion and inventive behaviours of innovating organisations. Chapter 16 by Breschi
and Lenzi analyses R&D networks among 331 US cities using patent data for the
period 1990-2004. The authors investigate the impact of network participation in
driving the spatial diffusion of scientific and technological knowledge. They pro-
pose new indicators that are intended to capture US cities’ propensity to engage not
only in local, but also global, knowledge exchanges, and relate these propensities to
cities’ inventive and economic performance. The contribution of Hidas, Wolska,
Fischer and Scherngell (Chap. 17) is in a similar spirit in that it aims to explain
inventive performance by means of network participation. The authors identify and
measure effects of research collaboration networks on knowledge production at the
level of European regions, using a panel data SDM relationship for empirical
testing.

Chapters 18 and 19 focus on different types of policy induced R&D networks,
and the impact of policy initiatives on network formation and innovative outcome.
Cantner, Graf and Hinzmann (Chap. 18) analyse the impact of governmental
funding on cooperation networks in Germany under the heading of the so-called
Leading-Edge Cluster Competition. The authors identify the extent of policy
influence for selected clusters on the network of the most important cooperation
partners, its geographic reach, and network dynamics. Chapter 19 by Korber and
Paier provides an alternative approach to investigate the relationship between STI
policy funding schemes, R&D collaborations and innovative performance. The
contribution presents an agent-based simulation model to explore the relationship
between a specific type of policy-induced networking, so called competence cen-
tres, and innovative outcome in the Viennese Life Sciences innovation system.

The volume closes with Chap. 20, which provides a synthesis of the main
empirical results, methodological advancements and policy implications. Further-
more, ideas for a future research agenda are presented, emphasising the need for
further crossing of disciplinary boundaries for the future investigation of the spatial
dimension of R&D networks and R&D collaborations.
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Part I1
Analytic Advances and Methodology



Chapter 2

Network Formation and Geography:
Modelling Approaches, Underlying
Conceptions, Recent and Promising
Extensions

Corinne Autant-Bernard and Cilem Selin Hazir

Abstract Due to the strong polarisation of economic activities in space and rise in
collaborative behaviour, increasing attention has recently been devoted to the
relationship between geography and network formation. The studies conducted
on this topic reveal a high variation in terms of methodologies. Putting special
emphasis on R&D networks, the aim of this chapter is to review the different
methods and assess their ability to address the issues raised by the relationship
between network and space. We first discuss the different facets of the relationship
between geography and networks. Then, we detail the methodological approaches
and their capability to test each effect of geography on network formation. We
argue that the effect of distance on dyads have received the major attention so far,
but the development of block modelling and top-down approaches opens new
research perspectives on how distance or location might affect formation of more
complex structures. Moreover, recent improvement in temporal models also offers
opportunities to better separate spatial effects from that of influence over time.

2.1 Introduction

In the field of economics, the relationship between geography and network forma-
tion attracts attention in order to understand how knowledge flows in a space of
social interactions relate to regional growth and innovation. So far a number of
studies have been conducted to elucidate this relationship. Even a glimpse on these
studies reveals a high variation in terms of methodologies.
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On the one hand, this variety stems from the fact that the term “geography”
contains a number of meanings in it. Sometimes geography is associated with
physical separation, sometimes it refers to locations as a material and relational
context for economic action, and sometimes geographical units themselves are
considered as nodes in a network. The way it is conceived, in turn affects the way
it is related to network formation and constrains model choices as some models are
not capable of testing all kinds of effects. On the other hand, the variety in
methodologies results from addressing the same phenomenon; i.e. formation of a
network, through different analytical perspectives.

From a “learning perspective” these differences enclose invaluable information
on the evolution of the way that the research community has conceived and
addressed the geographical dimension of network formation, and on possible future
directions. In this regard, this chapter will try to disclose this information by
elaborating how different meanings associated to geography can yield different
conceptualizations of geography-network relationship. Hence in Sect. 2.2 we will
address alternative ways of relating geography to network formation. In Sect. 2.3,
we will try to identify main distinctions between different methodologies and
compare models that are widely used in the study of spatial dimension of R&D
networks. Our aim here is not to provide a full-fledged list and a hierarchy of
network formation models but rather to highlight main differences in analytical
approaches putting emphasize on their ability to address the issues raised by the
relationship between network and space. Finally, we will review some recent
methodological advances that loom large regarding their potential future contribu-
tions to understand knowledge flows in space.

2.2 Relating Geography to Network Formation

2.2.1 A Tie Covariate: Physical Distance

One of the meanings associated to geography is the physical distance, which is the
relative position or physical separation of two entities. Under this definition, space
is perceived to be homogenous and exogenous to the network formation process
due to the fact that regardless of the configuration of the network, the physical
distance among nodes remains unchanged. Then, the role of geography is concep-
tualized as the effect of an attribute of a possible tie; i.e. the length of a tie.

High levels of this attribute is hypothesized to have a negative effect on the
utility out of being connected' due to the fact that there exists a facit component of
knowledge (Polanyi 1966) and some interaction is necessary for its transmission.
Therein, physical proximity is considered to be a facilitator of face-to-face

! As shall be seen in the succeeding section, this utility either refers to a utility obtained out of a tie
(see binary choice models), or to the utility out of the overall network (see ERGM).
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interactions, which in turn eases the transmission of tacit knowledge (Feldman and
Florida 1994) and hence increases the utility of being connected.> Also, physical
proximity is assumed to increase this utility via enabling cross-fertilization of ideas
(Feldman and Florida 1994) and timely inflows of information (Feldman 1993) and
by decreasing the cost of collaboration (Hoekman et al. 2009).

However, the fact that physical distance is just one of the many dimensions of
separation (Boschma 2005) and in particular the embeddedness of economic
relations between firms and individuals in social relations (Granovetter 1985) has
modified this hypothesis. Thus, it has become a matter of interest to know whether
physical distance still plays a role on the utility of being connected when the effects
of other dimensions of separation are controlled for.

2.2.2 A Node Covariate: Local Context

Another meaning that is associated to geography is the physical context that
economic agents are embedded in. Once the context that embraces networking
agents is taken into account, then the network becomes embedded in a physical
space. One way to relate this embeddedness to network formation is to consider the
physical space as an exogenous setting, which affects the attractiveness of the
organizations as potential partners or their capacity to establish connections. In
that case, the role of geography is conceptualized as the effect of a node attribute on
network formation. In the literature, this effect is formulated in a number of ways
such as the effect of agglomeration economies, knowledge externalities, system of
innovations, or innovative “milieu”.

Although, considering geography as an exogenous node attribute simplifies the
analytical processes to study network formation; obviously the local processes and
network processes are not mutually exclusive. On the one hand, the black-box of
advantages that a location provides might also include the outcomes or impacts of
network activity of its constituents. On the other hand, some local processes might
not only work through increasing node attractiveness or capacity but also through
creating tie dependence as will be discussed in the sequel.

2 However, if proximity is often associated with the tacit dimension of knowledge, we must avoid
an overly simplistic view (Massard and Mehier 2009). There are probably complementarities
between tacit and codified knowledge, any two being transmitted both locally and remotely. The
link between proximity and knowledge can then lie in the way of combining the tacit and codified
nature of knowledge.
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2.2.3 A Factor Affecting Tie Dependence: Physical Distance
and Local Context

Pattison and Robins (2002) argue that each network tie could be associated with a
“social locale”, which refers to “a complex relational entity that links the geo-
graphical, social, cultural and psychological aspects of the context for social
action”. They argue further that these social locales overlap with each other due
to the fact that “the outcome of processes in one locale may have some impact on
processes within another locale”. Therein, a local context might be considered as a
joint social locale for ties created within it, as they all share a number of
intermingled local processes such as social, economic, political, historical pro-
cesses. The outcomes of these processes might be heterogeneous across space and
they may create, enhance or even dampen dependencies among ties. Similarly,
being spatially proximate could be associated with overlaps in social locales as
being spatially proximate might mean sharing similar local features.

Hence, in this case the role of geography can be conceptualized as the effect of
tie dependence on network formation. Unlike considering the role of geography as
the effect of a tie attribute, in this conceptualization the specific role played by
distance is not disentangled from the role of other types of proximities or processes
that co-exist or interact with geographical proximity.

2.2.4 Regions as Nodes Themselves

As a matter of fact, geographical units may themselves constitute the nodes in a
network. In the case of networks representing economic relations, regions as nodes
symbolize the aggregate behaviour of individuals. Hence, all three types of roles
discussed above might be relevant to study the inter-regional networks. The role
played by the distance between two regions or existence of a common border might
again be considered as an exogenous tie property. Regional properties that might
affect the aggregate performance of individuals can be considered as exogenous
node attributes under the assumption that network processes and these properties
are mutually exclusive. Finally, contiguity or co-location in a wide geographic area
can be conceptualized as a factor affecting overlaps in social locales.

2.3 Approaches to Model Network Formation

Networks attract attention from a wide range of fields like medicine, biology,
computer science, sociology, political science, economics, etc. Accordingly, a
number of different analytical approaches have been suggested to model their
formation. A major distinction among these approaches stems from considering
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the network as an outcome of “choice” or “chance” (Jackson and Wolinsky 1996).
In the first view, formation of a network is explained on the basis of individual
incentives (costs and benefits) (Jackson and Wolinsky 1996). A number of strategic
and game theoretic models have been developed along this view. On the other hand,
graph-theory has bestowed various random graph models in line with the second
view, where the observed network is considered as just one realization among all
possible network configurations. Beside random graphs, complex network analysis
has been developed along the same line. Finally, the usual econometric models and
spatial econometrics have also been applied to study the network, where both views
are in play.

These approaches may also be classified into two as static approaches and
dynamic approaches. The former works on a snapshot of the network; whereas
the latter considers the evolution of the network in time. Among those, some
models allow creation of new nodes in time as in the case of preferential attachment
model (Barabdsi and Albert 1999). Some others allow studying the dynamics
stemming from creation and dissolution of ties among a fixed set of nodes in time
as in the case of stochastic actor-based models (Snijders et al. 2010).

As a third classification, these approaches can be considered in two groups as
top-down approaches and bottom-up approaches. Top down approaches focus on
the topology of the network as a whole and try to identify global features rather than
modelling the network on the basis of individuals. Complex network analysis or
block modelling (Nowicki and Snijders 2001), where the aim is to identify groups,
members of which are equivalent in terms of their connection patterns, may
illustrate this approach. On the other, hand bottom-up approaches focus on pro-
cesses taking place in components of the network. Therein, a further distinction can
be made among bottom-up approaches with respect to the types of components that
they focus. In some approaches the network configuration is explained by focusing
on the behaviour of actors, ex: stochastic actor-based models (Snijders et al. 2010).
Whereas in some others the focus is either on formation of a single tie or a local
pattern (a subset of ties).

Another distinction among these approaches could be made with respect to
underlying assumptions on tie dependence. Some models base on the assumption
that the stochastic processes behind formation of ties work independently. Some
others assume that the outcomes of these stochastic processes are correlated. Finally
a third group assumes that some ties are realized jointly through the same stochastic
process.

In the sequel, we will focus mainly on the empirical studies that investigate the
role of geography in R&D networks. We will discuss them under three headings:
network as the equilibrium of choices; network as an outcome of choice and
random effects, and network as an outcome of a random process. We will try to
highlight the differences in the analytical process among these models in terms of
the above-mentioned criteria and their capacity to handle alternative ways of
relating geography to network formation
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2.3.1 Network as the Equilibrium of Choices

As mentioned earlier the game theoretic approach considers the network as the
outcome of individual choices. Among these models the seminal work by Jackson
and Wolinsky (1996) has considerable influence on both theoretical and empirical
work on the geographical dimension of R&D networks. Their model, known as the
connections model, explains the formation of a network on the basis of individual
incentives (costs and benefits) and bases on the idea that agents do not only benefit
from those they are linked directly; but also from those they are linked indirectly.
The benefit they can obtain from others decreases with distance; but direct links are
costly implying a trade-off between the benefits and costs of a direct link.

The spatial extensions of this model is provided by Johnson and Gilles (2000)
and Carayol and Roux (2007). In these extensions the role of geography is inves-
tigated in a static network, where the number of nodes is fixed. Geography is
considered as the geographical distance and its role is hypothesized as an exoge-
nous factor affecting the cost of maintaining a link. Based on this conception on the
geography-network formation relationship, these theoretical models suggest that
for a wide range of intermediary values of decay in transmission of knowledge, a
particular stable network structure called “small world” emerges. Carayol and Roux
(2007) also provide some empirical evidence by fitting the model to actual
co-inventions that took place during 1977-2003 with at least one inventor located
in France.

2.3.2 Network as an Outcome of Choice and Random Effects

While in the game theoretic models the network is considered as the equilibrium of
individual choices, in some statistical models used to study connections among
nodes we see an expression of the utility that an individual can obtain out of its
choice and some notion of randomness in making that choice. In the sequel, these
models will be explained briefly and their capacity to integrate the geographical
dimension will be discussed.

Binary Choice Models. The use of Binary Choice Models illustrates the applica-
tion of usual econometric tools to study network formation (Geuna 1998; Powell
et al. 2005; Mairesse and Turner 2005; Autant-Bernard et al. 2007; Paier and
Scherngell 2008). These models aim at explaining the factors that affect realization
of a single tie; hence they analyse formation of a network by focusing on its
smallest unit. Factors that are symmetric for a pair of nodes, i.e. tie attributes, are
the easiest ones to test with these models. Some practical problems arise in studying
the effect of node attributes since the explanatory variables have to be symmetric
and hence insensitive to the changes in the order of indexation. Finally, these
models allow studying the effect of the observed network configuration on tie
formation but under the assumption that it is an exogenous factor. This stems
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from the fact that in these models realization of a tie is supposed to be a Bernoulli
process, meaning that ties are realized independently of each other.

Therein, the capacity of Binary Choice Models to investigate the role of geog-
raphy mainly lies in the ability to study how physical distance affects the proba-
bility that a tie is created given the effect of other factors. This ability complies with
the research interest to demarcate the role of geographical proximity from that of
other proximity dimensions. In these models geography may also be included as a
node attribute as long as they are defined symmetrically for the pair of nodes.
Finally, due to the tie independence assumption, with these models it is not possible
to study the role of geography in terms of tie dependence.

Poisson Regression Models and Gravity Models. The analytical process and the
assumptions in Poisson Regression Models are the same as those in Binary Choice
Models except for the fact that the objective is to explain the intensity of interaction
among a pair of nodes rather than its existence (Powell et al. 1996). Hence, they
allow studying the role of geography on the intensity of interactions, where this role
could be introduced as a tie or node property (Mairesse and Turner 2005; Frachisse
2010). Once distance is accounted for, Poisson models can be interpreted as gravity
models. As in the case of Poisson Regression Models, the objective in Gravity
Models is to explain the strength of interaction among two spatial units. Hence, the
approach undertaken to explain for the network builds upon ties among pairs. This
type of models can be applied to individual choices or aggregated behaviour. It is
worth noticing however that much attention has been devoted so far to study inter-
regional networks, hence focusing on aggregated data.

The use of these models illustrates an application of spatial analysis techniques
to study network formation. The earlier studies using Gravity Models assume that
the stochastic process behind tie formation works identically and independently;
i.e. any pair of ties, among the same pair of nodes or not, are independent (Ponds
et al. 2007, Maggioni et al. 2007; Scherngell and Barber 2009; Hoekman
et al. 2010). More recent applications (Scherngell and Lata 2011) take the spatial
autocorrelation among flow residuals into account and corrects for this by using
eigenvector filtering. Hence, the extension with spatial filtering rests upon weaker
assumptions on tie dependence since it handles the correlation among ties sharing
the same node.

As Gravity Models include two mass terms and a separation function; they allow
studying the role of geography as a node itself with some attributes and as a tie
attribute. The extensions dealing with spatial autocorrelation might allow control-
ling for correlations among intensity of interactions resulting from the topology of
regions. Hence, the specific role played by the physical distance might be identified
better as suggested in Chap. 11 of this book.

Stochastic Actor-Based Models. Stochastic Actor-based Models are statistical
models to study tie dynamics in networks of fixed size (Snijders et al. 2010). As
the name implies they focus on the behaviour of actors and model the formation of
the network by means of changes that actors make in their outgoing ties. These
changes are explained by means of two functions. The former is the rate function
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showing the frequency at which a change occurs. Whereas, the latter refers to the
objective function, which shows the probabilities of alternative courses of action
given the opportunity to make a change. This function is expressed in terms of
“effects”, which are tendencies (like reciprocity, closure, multi-connectivity etc.)
taking place locally.’ Both functions may depend on network position of actor and
some actor attributes.

These models assume that actors act independently; hence the changes they
make are not coordinated yet sequential. However, as the outcomes of their
decisions change each other’s environment, in time their actions depend on each
other. Thus, unlike Binary Choice Models, where for each pair of agents the rest of
the network is considered exogenous simultaneously; the sequential nature of
Stochastic Actor-based Models allow handling dynamism in choices and depen-
dencies on the environment.

Geographical dimension might be introduced in these models through both the
rate and the objective function. A rate function differentiated with respect to
location of actors might enable spatial heterogeneity in frequency of tie changes.
On the other hand, the objective function might be modified either by integrating
the distance as a dyadic covariate (Ter Wal 2013), or location as a node attribute
(Balland 2012) which in turn might be used to study the effect of co-location and
some network effects arising from being co-located.

2.3.3 Network as an Outcome of a Random Process

As mentioned earlier the graph theoretic approaches consider the observed network
as an outcome of a random process. Hence, these approaches do not base on utility
functions of micro agents but on the distribution of probabilities. Nevertheless, it
should also be noted that although a utility function is not specified in these models,
the distribution of probabilities can be constrained using a theoretical basis on
preferences of agents.* Below, graph theoretic approaches used to study geograph-
ical dimension of R&D networks are discussed.

Exponential Random Graph Models (ERGM or p*). ERGMs are (Frank and
Strauss 1986; Wasserman and Pattison 1996) more recent types of random graph

3 These effects are similar to the “local configurations” in Exponential Random Graph Models that
will be discussed in the sequel.

* As shown by Park and Newman (2004) random graph models can be expressed as a constrained
maximum entropy problem; which maximizes the entropy in the probability distribution of
observing a particular network configuration. In the earlier random graph models (Erdés and
Renyi 1959) the problem is constrained only by the number of edges in the network and a
probability distribution which assigns the same probability to all networks with the same number
of edges is obtained. However, in more recent models as shall be seen in subsection on Exponential
Random Graph Models, the preferences of actors for homophily, central agents, closure, etc. can
be used as additional constraints by defining local configurations accordingly.
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models. They allow studying networks with a fixed set of nodes. However, as will
be discussed in Sect. 2.4, temporal extensions that allow dynamism in terms of tie
creation and dissolution have recently become available. The idea behind these
models is that the observed network is just one realization of all possible configu-
rations of connections among a given set of nodes. Hence, as stated by Cranmer and
Desmarais (2011), there is a “conceptual leap” from the Binary Choice and similar
models to ERGM. While in the former the vector of interest is a series of values
drawn from a univariate distribution; in ERGM it is considered as a single draw
from a multivariate distribution. This leap allows relaxation of the tie-independence
assumption and provides ERGMs capacity to tackle with even complex dependence
structures among ties (see realization dependence assumptions by Pattison and
Robbins 2002).

An ERGM explains the formation of a network by means of local configurations,
which are some small and regular patterns. Among all possible network configura-
tions it gives a higher probability to those that are similar to the observed network in
terms of these small structures. In defining these local configurations, ERGM is
capable of differentiating ties and nodes with attributes (Robins et al. 2007).

Therein, the capacity of ERGMs to investigate the role of geography is three-
folds. First, it may be studied as the role of physical distance by means of a distance
interaction function (Daraganova et al. 2012). Second, geography may be included
as a node attribute. Third, geography can be considered as a spatial setting that
imposes limits on tie dependence, hence on local configurations (Pattison and
Robbins 2002). The studies by Broekel and Hartog in Chap. 4 and Hazir in
Chap. 13 illustrate the applications of these models on R&D networks.

Preferential Attachment Model. Preferential Attachment Model (Barabasi and
Albert 1999) is a graph theoretical model explaining dynamic networks with
growing number of nodes. The model in its original form explains the formation
of a network as a process where the degrees of existing nodes increase proportional
to their magnitude and result in a scale-free degree distribution. Hence, it considers
a single factor; i.e. degree affinity of agents, to explain for the network via
explaining one of its macro properties; i.e. its degree distribution. The extension
by Vinciguerra et al. (2010) integrates the effect of geographical distance and
co-location in the same country to the probability that a node receives connections
as the network grows.

Complex Network Analysis (CNA). While the models reviewed so far aim at
explaining the formation of a network by means of micro processes, Complex
Network Analysis focuses on the overall topological structure of complex
networks. Hence CNA aims at identifying and explaining key global features like
degree distribution, diameter, clustering, and communities.

A number of studies revealed that R&D networks display a scale-free degree
distribution, “small-world” property in terms of diameter and high “clustering”
(Goyal et al. 2006; Newman 2001; Gay and Dousset 2005). On the one hand,
theoretical models (Johnson and Gilles 2000; Carayol and Roux 2007), the above
mentioned spatially extended preferential attachment model, and possibly ERGMs
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illustrate how a model explaining the effect of geography on micro processes can
also explain for these global properties. On the other hand, CNA adopts a macro
perspective to study the spatial dimension of such properties. The study by Barber
and Scherngell in Chap. 10 illustrates studying the heterogeneity in the spatial
configuration of communities in an R&D network. Whereas, the study by De
Montis et al. in Chap. 3 illustrates the use of CNA to investigate whether similar
geographical contexts give rise to similar global network properties or not.

2.4 Conclusions and Future Directions

In this chapter, we considered the relationship between geography and network
formation but our focus was on how to investigate this relationship. Hence, we
reviewed different meanings of geography and different conceptualizations of this
relationship. Then we provided an overview on different approaches through which
network formation is explained. Our aim was neither to provide a complete list or a
hierarchy of network formation models nor to identify best models. Rather we were
interested in two aspects. First, leaving all the practical issues and formal definitions
of models aside, we aimed at identifying the grand avenues that a researcher can
follow in studying network formation. We identified that whether to consider it as
an outcome of choice or chance; whether to consider it as a dynamic or a static
process; whether to explain it from bottom-up or top-down; whether to study its
complex interdependencies or simplify it are the major decisions to be made by the
researcher in making a model choice. Second, all these choices suggest a different
capacity to study the role of geography. Hence, we reviewed applied studies with a
particular interest on those on R&D networks to highlight these analytical differ-
ences, the evolution of analytical frameworks (if any) and to identify future
directions.

One of the main conclusions that could be derived from this review is that so far
the research community made use of mainly bottom-up approaches to study the role
of geography in formation of R&D networks. In other words, the emphasis is given
to explain how geography affects the formation processes at the micro level.
Although global topological features of these networks have attracted attention,
spatial heterogeneities in these global features or heterogeneities in spatial patterns
of components of networks have received less attention. Apart from those tech-
niques used by Barber and Scherngell in Chap. 10 and by De Montis et al. in
Chap. 3; block modelling might also be used to study the relationship between
geography and network components, members of which are equivalent in terms of
their connection patterns.

Another conclusion could be derived on the evolution in the analytical processes
that are adopted to study the role of geography in formation of R&D networks.
While there is not a clear cut distinction, it is noteworthy that the community has
recently shown interest in models that can allow dependence among ties. This
enables demarcating the effect of dependence from other factors of interest; hence
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improves estimates for the role of geography. Furthermore, the ability of these
models to handle tie dependence results in models which can explain the global
topology of the network (such as clustering, degree distribution, etc.) as well as the
local process in focus. However, the relationship between geography and tie
dependence is far from being exploited. So far the effect of distance on dyads
have received the major attention, leaving how distance or location might affect
formation of more complex structures than dyads aside.

A third conclusion stems from the temporal dimension of networks. As a matter
of fact most applied studies consider an R&D network as a static object, where
neither new nodes are added nor ties created or dissolved. Applications of stochas-
tic actor-based models relaxed this assumption and considered the tie dynamics
among a fixed set of nodes. These models indeed possess a capacity to analyse not
only the determinants of tie formation but also tie dissolution by means of an
endowment function (Snijders et al. 2010). Hence, these models may well be
used to study the role of geography on tie dissolution. Although not applied to
study the geographical dimension of R&D networks some recent temporal exten-
sions of ERGM also suggest similar possibilities. Among these Hanneke
et al. (2010) provides Temporal Exponential Random Graph Model (TERGM),
which allows studying the evolution of a network of fixed size. Whereas, Krivitsky
and Handcock (2010) enables separating tie formation and dissolution processes in
a TERGM.

Apart from these some other model extensions suggests additional explanatory
capacity for the field. Among these, extension of ERGMs for valued networks
(Krivitsky 2012) stands as another tool to study the effect of geography on the
intensity of connections, which has been studied so far by means of Poisson
regression models and gravity models. The ability of this tool to handle tie depen-
dence might be useful for better treatment of network effects and demarcate the role
of geography more properly. In addition to that, Steglich et al. (2010) extended
Stochastic Actor-based Models to distinguish partner selection from social influ-
ence in a dynamic network. This extension basis on the idea that two actors showing
the same behaviour might be collaborating due to similarity in their behaviour, or
one gets similar to the other as a result of being connected. The ability to separate
those two processes might be valuable in better demarcation of spatial effects from
that of influence over time.

In addition, by improving our understanding of network formation and evolu-
tion, all these developing techniques may also contribute to a better comprehension
of the mechanisms that generate network outcomes. A growing literature tries to
understand how some of the particular topological network properties (such as
density, clustering, connectivity of the network, degree distribution of nodes or
degree assortativity) influence economic performances at the regional level
(Breschi and Lenzi 2011; Crespo et al. 2013). However, as argued by Ahuja,
Soda and Zaheer (2012), “without a comprehension of the logic that drives network
creation, scholarly understanding of their outcomes remains incomplete” (p. 34). In
particular, as it is difficult to identify whether the network structure implies the
outcome or the reverse, we have to consider both aspects together. To this respect,
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the contributions of spatial econometrics to the field of network analysis may
extend beyond gravity models as suggested by (Autant-Bernard 2012). Spatial
tools can indeed provide valid instruments allowing endogenous effects to be
separated from exogenous ones (see for instance Bramoullé and Fortin 2009). In
the same line, the temporal extensions of the above reviewed network approaches
are also very promising in order to cope with this causality problem.

Finally, it is a matter of fact that model choices are strongly constrained by the
nature of data and data availability. Assumptions of a model might be severe or
reasonable depending on the nature of the data and on the properties of the
economic process through which it is generated. Hence, there is no one-for-all
answer on how to study the spatial dimension of network formation.
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Chapter 3
Recent Developments of Complex Network
Analysis in Spatial Planning

Andrea De Montis, Simone Caschili, and Alessandro Chessa

Abstract In the last years, we acknowledge a great scientific interest on complex
network analysis, a method able to characterise systems with very large numbers of
entities (the nodes or vertices) interlaced by a series of connections/relationships
(the links or edges). The objects of analyses as such are biological (predator-pray);
information (internet); social (actor-in the same movie); transportation (railway and
road networks) systems. While in general a network is an abstract (topo) logical
object, spatial networks belong to an important class of systems that includes nodes
and edges with a clear reference to space. Recently the interest of scientists has
focused on methods able to define and investigate on communities emerging from
the structure of a network. In this respect the spatial factor can emerge both as the
result of the topological community structure that maps back onto geography in the
form of sensible spatial regions, or just as spatial clusterisation of nodes in principle
embedded in space. In this essay, the authors aim at presenting a state of the art
summary of the last advances in the field of network community detection meth-
odologies with a detailed view to the case of spatial networks. Secondly, the paper
will report on a case study concerning a major issue for policy makers and planners:
the delimitation of sub-regional domains showing a sufficient level of homogeneity
with respect to some specific territorial features. We compare some intermediate
body partitions of the island of Sardinia (Italy) with the patterns of the communities
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of workers and students, by applying grouping methodologies based on the char-
acterisation of the Sardinian commuters’ system as a complex weighted network.

3.1 Introduction

Over the last 15 years there has been a great scientific interest in complex network
analysis, a method able to characterize systems with a very large number of entities
(the nodes or vertices) interlinked by a series of connections/relationships (the links
or edges). The objects of this analysis have regarded biological systems (predator-
pray); information systems (Internet); sociological systems; and transportation
systems (railway and road networks). While, in general, a network is an abstract
topological object, spatial networks belong to an important class of systems that
includes nodes and edges with a clear reference to space. Recently the interest of
scientists has focussed on methods able to define and investigate communities
emerging from the structure of a network. In this respect the spatial factor can
emerge both as the result of the topological community structure that maps back
onto geography in the form of sensible spatial regions, or just as spatial clustering of
nodes in principle embedded in space.

In this essay, the authors aim to present a state of the art summary of the last
advances in the field of network analysis and network community detection meth-
odologies focusing on spatial networks. We will review a case study concerning a
major issue for policy makers and planners: the delimitation of sub-regional
domains showing a sufficient level of homogeneity with respect to some specific
territorial features. We compare some intermediate administrative bodies of the
island of Sardinia (Italy) with the patterns of the communities of workers and
students, by applying grouping methodologies based on the characterization of
the Sardinian commuter system as a complex weighted network.

This essay unfolds as follows. In the next section, we develop a brief state of the
art summary on social networks with a focus on Research and Development (R&D)
networks. At the end of this section, we introduce the reader to the main concept of
the essay, i.e. spatial networks displaying a clear geographical reference. In the
third section, we review the recent advancements in the field of complex network
analysis as well as its adoption in geography, spatial and regional planning. In the
fourth section, we report on the latest advances regarding community detection
methodologies able to cluster nodes into homogeneous groups. The fifth section
presents a case study about the application of a network community detection
approach to study the problem of regionalisation. Commuter basins in the island
of Sardinia (Italy) are used to scrutinise the relevance of administrative subdivi-
sions at the provincial level.
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3.2 Complex, Social and R&D Networks

Complex network analysis (CNA) consists of a set of methods and tools, grounded
in graph theory, that enable scientists to model systems as networks. This approach
emphasizes the role of agents (i.e. the nodes or vertices) and the relations between
them (i.e. the edges or links). More and more, CNA has become the go to tool for a
number of scholars in many disciplines, ranging from macro infrastructures such as
road systems and gas pipeline frameworks, to the Internet, the world wide web and
micro ensembles, such as: genomic protein-amino acid and DNA chains (for a
review, see Albert and Barabasi 2002; Newman 2003).

Social science has similarly applied graph theory to the study of many issues in
sociology, business administration, industrial management, anthropology and psy-
chology. In these works, nodes signify individuals and edges signify patterns of
acquaintances between them. One of the cornerstone findings in social science, the
‘six degrees of separation’ experiment (i.e. small world phenomena) was carried
out by the psychologist Stanley Milgram (1967) using graph theory. After
Milgram’s work, many authors further investigated collaborative social systems
(for a review of methods and applications, see Wasserman and Faust 1994). In these
studies scientists, engineers, or inventors are modelled as vertices and the links are
collaborative ties between them. Inter alia, Bloch (2005) scrutinised individual
behaviours of agents and collective dynamics of wide organizations.

In the remainder of this section, we discuss five research articles that have
demonstrated that individual behaviour in productive domains is clearly affected
by relational roles played by each agent both directly, on their local neighbour, or
indirectly, on the global network.

Hanaki et al. (2010) studied spillover effects arising from R&D collaborations in
the U.S. Information and Technology industry. Starting from the analysis of patents
granted from 1985 to 1995, they investigated the dynamics of the inter-firm
ensembles through a topological network representation. Firms are modelled as
nodes and edges represent collaboration ties (two firms were connected if they had
at least one inventor in common). Hanaki et al. (2010) demonstrated that the U.S. IT
R&D network belongs to the class of “small world” networks (Watts and Strogatz
1998). In the U.S. IT R&D network, the number of collaborations has increased
over the past few years generating a denser and more interconnected system. Nodes
display behaviours similar to the preferential attachment rule (Barabasi and Albert
1999). In the case of R&D networks, the more connected nodes have patterns of
collaboration choices that are affected by closure and preferential attachment
(Barabasi and Albert 1999).

Jin et al. (2011) referred to R&D networks of scientific collaborations. They
scrutinised research on bio-, and nano-technology from the R&D national data of
South Korea. Jin et al. detected and characterized nine communities of scientists
applying a divisive method introduced by Newman and Girvan (2004) for network
grouping and generalized for weighted networks. CNA showed that this R&D
network exhibits properties typical of scale free networks, similar to the network
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of citations between scientific papers (Derek de Solla Price 1965). The authors
presented an interesting description of the relationships between scientists working
in different fields and between their clusters. CNA approach allowed them to
indicate the most prominent members in each cluster and the most promising
sectors of R&D, which are worth interest and funding.

Konig et al. (2012) studied networks of firms focussing on costly R&D collab-
orations. In this study the authors described the inventive activities of firms
belonging to technology intensive industries. They demonstrated that stability and
efficiency is clearly dependent upon the cost of R&D collaborations and the
topology of the network. The authors also argued that “the complete graph is stable
in small industries and for low collaboration costs, while the class of size-
homogeneous disconnected cliques and the star are stable in large industries”
(Konig et al. 2012, p. 707).

Smith-Doerr et al. (2004) scrutinised the social network of project managers
belonging to the R&D laboratory of a Fortune 500 company and leading six
projects. They developed a CNA to study the centrality of each manager under
four points of view: instrumental, expressive, technical advice, and organizational
advice. In particular, the authors calculated the in-degree centrality (Freeman 1979)
of all the 42 members of the laboratory and discovered that project leaders’ average
centrality is by far higher than the corresponding figure of all lab members. A
relevant result of this work is that network centrality matters. The project leader,
who has a high centrality in almost all networks, is the only manager able “to look at
the big picture and generally reflect on how to think about R&D project success or
failure” (Smith-Doerr et al. 2004, p. 74).

We conclude this section focusing on spatial networks which are at the core
analysis of this manuscript. In the field of R&D networks, scholars have often
ignored the contribution of space and geography to this topic. Oerlemans and
Meeus (2005) investigated inter-organizational networks and the effects generated
by spatial proximity on firm performance. They argued that innovation agreements
with intra-regional firms matters but in a specific way. Firms that use intra- and
interregional agreements tend to outperform other firms in the same sector. But
firms that only depend on intra-regional or on interregional innovation ties do not
perform better than other firms in their sector. A combination of intra- and
interregional innovative ties are essential for the commercial success of a firm
(Sternberg and Arndt 2001; Oerlemans and Meeus 2005). The influence of space on
Research & Development collaboration has been studied by Chessa et al. (2013).
They took into consideration the evolution of geographical collaboration networks
under the European Research Area (ERA) framework. They scrutinized the net-
work generated by patent and scientific publication data by applying network
community detection methods (we will discuss this methodology in Sect. 3.4).
Results show that since 2003 the level of collaboration within and outside European
countries is stable which has resulted in poor research collaboration among Euro-
pean countries.
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Under this context, we are interested in inspecting the influence of space on
networks. In the next section we review the latest advances in the field of CNA with
a focus on geography and regional planning.

3.3 Complex Networks Modelling and Spatial Planning

Two hundred years ago only 5 % of the world’s population lived in cities, today
more than 50 % lives in urban areas. This trend is likely to increase as scientists
have forecasted that more than 80 % of the population will live in cities by the end
of the twenty-first century.' Apart from the modification of our economic activities
(200 years ago people lived in rural areas and their main activities were generation
of food), living in compact settings has intertwined the daily activities of people
with “soft” and “hard” infrastructures. Cities are composed of interlinked systems
that can be conceptualised under the lenses of networks modelling. People move for
work or leisure using transport systems (trains, buses, roads, flights etc.), commu-
nicate and exchange information through land lines and digital networks (i.e. the
Internet); our lives are powered by electricity, sustained by utility systems and kept
safer through CTV camera networks. Financial systems, education systems, health
care systems, systems of government, as well as emergency services (i.e. “soft”
infrastructures) all contribute to maintain economic, health, cultural and social
activities in a territory. Because of their interactive nature, all these systems can
be seen as networks that are part of our daily life. Thus, we are surrounded and
immerged in networks that have intrinsic spatial features (Barthélemy 2011).
Within the field of spatial planning, several authors have studied spatial networks
with different aims such as scrutinising the network centrality of streets in a city and
the correlation with economic activities (Porta et al. 2010); the disease contagion
through human mobility networks (Bajardi et al. 2011); impacts, accessibility and
network patterns generated by movements of commuters among regional units
(De Montis et al. 2007, 2011; Caschili and De Montis 2013); urban transport
networks — i.e. bus, subway (von Ferber et al. 2009; Kurant and Thiran 2006;
Latora and Marchiori 2001); the structure and vulnerability of power grids
(Crucitti et al. 2004; Albert et al. 2004) and water distribution networks
(Yazdani and Jeffrey 2010).

The popularity of network modelling and analysis results from three factors:
(i) availability of large real-world data sets (also geographically referred),
(ii) accessibility of cheap high computational resources and (iii) opportunity, also
for non-computer scientists and mathematicians, to scrutinise large non-linear
systems. Within the field of spatial and regional planning, scientists and practi-
tioners have applied complex network analysis with two approaches: the first
derives from the statistical mechanics field and aims to explain observed

! Source: http://web.unfpa.org/swp/2007/english/introduction.html
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hierarchical structure of settlements and to advance urban models using stochastic
approaches (Andersson et al. 2006; Porta et al. 2006a, b). A second branch of
studies adds to urban planning from a social network perspective. A few scholars
have also studied the interdependencies and influences among diverse actors in
planning processes (Booher and Innes 2002; Innes and Booher 2010).

From a modelling view point, classic planning approaches have long revolved
around the understanding of (i) patterns and rationale of economic activities
distributed in urban regions, (ii) forces that influence spatial configuration, and
(iii) urban structures and functions. Monocentric (Muth 1969; Mills 1972), poly-
centric (Heikkila et al. 1989; Wang, 2000) and dispersed models (Lang 2003) have
been used to describe the hierarchical organisation of urban settings. The relation-
ship between land use, economic activities and mobility are conceptualised through
rank-size rules (Zipf 1949), gravitational models (Putman 1983; Anderstig and
Mattsson 1991; Martinez 1996), spatial interaction models (Wilson 2000) and
discrete choice models (McFadden 1974).

In the remainder of this section we discuss the contribution of the two classes of
studies under the research framework of complex network analysis that have been
used in spatial and urban planning. Urban morphology has been at the core of these
studies. Seminal works that scrutinised urban morphology with a network approach,
date back to the 1960s with the work of Nystuen and Dacey (1961). They used
networks of commuters, goods and communications to quantify the degree of
association between cities. Kansky (1963) proposed a number of measures based
on graph theory to characterise transportation networks. A decade later, Space
Syntax methodology (Hillier et al. 1976; Hillier and Hanson 1984; Hillier 1996)
introduced a pioneering approach to measure the relation between different com-
ponents of urban structure using planar graphs. The novelty of this approach
consisted in measuring the cognitive complexity of a spatial graph through
non-local network measures. Space Syntax has multiple applications in a variety
of fields such as architecture, planning, transport and interior design (Hillier 1996).
Advancing the research framework of Space Syntax, Porta et al. (2006a, b, 2010)
introduced the concept and methodology of Multiple Centrality Assessment
(MCA). The aim of this new methodology was to include metric measures to
understand street networks and to use the spatial geographical representation of a
network instead of dual representations. In fact, Space Syntax scrutinises dual
graphs of real networks: axes are turned into nodes and intersections into links,
thus losing the geographic content of a network (Porta et al. 2010). It is interesting
to note that while urban growth has been investigated with a number of methods,
such as agent-based (Benenson 1998), spatial statistic modelling (Lopez et al. 2001;
Wu and Yeh 1997), neural networks (Pijanowskia et al. 2002) and fractal based
modelling (Batty and Longley 1994; Makse et al. 1998), the contribution of
network analysis to this topic is still scant. Focusing on microscopic mechanisms
of urban growth that generate macroscopic structures, Barthélemy and Flammini
(2008) proposed a network model which combines an optimisation process with
pattern formation. The main assumption of this model is that road networks evolve
converging into mass centres in an efficient and economic way. Andersson
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et al. (2006) used complex networks combined with a cellular automata and verified
that their model is consistent with large-scale regularities such as power laws and
fractality. With this approach they have been able to verify that hierarchical urban
structures can be explained as ‘a stationary property of a stochastic evolutionary
process rather than as equilibrium points in a dynamic process’ (Andersson
et al. 2006). Finally network analysis has also been used to address the so-called
‘problem of regionalisation’, i.e. to group local administrative units in upper level
clusters. In Sect. 3.5 we present a case study (De Montis et al. 2013) which has
applied network community detection as a tool to investigate the problem of
regionalisation.

The activities of urban planners are not only focused on modelling land uses,
population growth, mobility, and social and economic activities, but also around
regulations, stakeholder engagement and more in general public engagement. In
this direction, the contribution of social network analysts have involved collabora-
tive activities across public authorities (Scholz et al. 2008), public participation in
planning processes (Holman 2008; Davies 2002) and social community detection
(Wellman 2001). According to Dempwolf and Lyles (2011) three ‘broad planning
issues’ can be addressed with the tool of social network analysis. First, it is
important for a planner to understand the dimension and composition of a commu-
nity which, after all, is the beneficiary of planning activities. Thus planners should
take into consideration not only the various categories (young, adult, elderly,
employed, unemployed etc.) that compose a population but also the links between
them which generate the complex phenomena that we observe in a territory. A
second issue regards public participation. The use of network maps enhances
capital interaction among the ‘actors’ of a planning process and allows planners
to pay attention to their position in the network. Finally, a third issue regards the
creation of spatial and social dimension which generates innovation. Eraydin
et al. (2008) show that social networks among governmental and nongovernmental
actors instil a positive economic effect in a territory.

We conclude this section with some final remarks. Despite its importance as a
suitable tool for analysis in planning, complex network analysis seems scarcely
applied to territorial planning and processes. Much has still to be done for this
technique to be fully integrated in the tools used by planners.

3.4 Community Detection in Networks

In network analysis, starting from the network topological structure, it is possible to
extract various types of information. Beyond the well known centrality measures, a
way to characterize the internal network organization is to look at the cluster
formation among the node components, i.e. group of nodes that are well connected
among themselves with few outgoing links toward the other groups. Under the
Complex Networks Theory field, the task of finding these clusters goes under the
name of Community Detection (see Fortunato 2010, for a review). For example, in
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the World Wide Web communities correspond to websites pertaining to related
subjects (Flake et al. 2002); in social networks as clusters of individuals connected
by similar activities (Girvan and Newman 2002; Lusseau and Newman 2004),
while in metabolic networks communities behave as functional modules (Guimera
and Amaral 2005; Palla et al. 2005), and compartments in food webs (Pimm 1979;
Krause et al. 2003).

Generally speaking, we can define three main categories: local, global, and
based on vertex similarities. In local definitions, the local connectivity of nodes is
inspected, disregarding the rest of the graph. In global definitions, the graph is
analyzed as a whole and the communities are regarded as structural units of the
graph. Definitions based on node similarity select communities’ membership
whenever nodes are similar each other, according to a quantitative/qualitative
criterion. In general, community detection aims to identify communities through
an analysis of the topology of a graph. New advances also propose to extend the
detection of communities in weighted networks, where not only the topology
shapes the cluster structure but also the weight of each link.

Indeed, community detection may become a complex activity, if we consider
systems with a large number of nodes and links. Communities tend to overlap each
other showing some nodes in common throughout the network (Palla et al. 2005;
Fortunato 2010). Another case is that of large networks for which nodes have
various levels of organization. Communities can have hidden internal cluster
organization, i.e. a community may include recursively other smaller communities.
In this case the community structure is characterized by a hierarchical structure
(Sales-Pardo et al. 2007).

In the literature, we can find three main classes of methods: divisive algorithms,
optimization methods, and spectral methods. Alternative approaches that do not fit
in the above classification are the following: clique percolation, random walk,
maximum likelihood, Q-state Potts model, Markov cluster algorithm, and L-shell
method (see Fortunato 2010).

In the study of the regionalization processes we envisage an interest of analysts
and planners for network based community detection methods. These tools are able
to detect patterns starting from the analysis of similarities among the basic elements
under investigation (the nodes) intertwined in a known topology. This goal can be
achieved, because network community detection methods cover additional infor-
mation, in comparison to traditional clustering methods adopted for identifying
sub-regions.

There are various community detection methods and algorithms; one of the most
important, adopted in many applications, is the modularity optimization introduced
by Newman and Girvan (Newman and Girvan 2004). This method has been widely
adopted, because it has a very straightforward implementation. However, it is
generally extremely difficult to find the best network partition. It has been found
that the optimization process is an NP-complete problem (Brandes et al. 2006). In
this case, it is probably impossible to find the solution in a time growing
polynomially with the size of the graph. In this respect the best approach is to use
a heuristic procedure able to approximate the solution. Moreover, the methods
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based on modularity optimization have a drawback related to the existence of a
resolution limit (Fortunato and Barthelemy 2006), which prevents it from detecting
smaller modules. The modularity function is defined as follows:

_ 1 N IO YO
& =aw 2 (s =3 - olenc)

where w;; is the weight associated to the edge connecting the node i and the node j,
s; = . wjj (node strength) is the sum of the weights of the edges attached to the
node i, W = %Z w;; is the sum of all the edge weights, and 6(c;,¢;) is a function
equal to one, when vertices i and j belong to the same community, and to zero
otherwise.

The modularity function quantifies the goodness of a network subdivision
among all possible ones, by computing, for a particular subdivision, how many
edges are inside the communities, with respect to the random case. The maximum
value attainable is 1 (an ideal case for which the clusters are perfectly isolated) and
can take also negative values. The 0 value corresponds to a single partition that will
coincide with the whole graph. A negative value means that the communities will
typically have few internal edges and many edges lying between them and so there
is no community structure whatsoever.

Once the optimization function has been defined, we need an efficient method to
maximize it. One of the most successful algorithms is the so called ‘Louvain
algorithm’ as proposed by Blondel et al. (2008).

The Louvain algorithm is quite interesting, since it allows one to successfully
approach two critical issues of optimization methods: detecting communities in
large networks in a short time and taking into account hierarchical community
structure. The number of communities at each hierarchical level emerges naturally
from the algorithm and has not to be imposed at the beginning, as in other clustering
approaches. Moreover, this bottom up approach can possibly help in preventing the
resolution limit problem found by Fortunato and Barthelemy (2006). This algorithm
may be used for both weighted and un-weighted networks.

The modularity is extremely useful in regional studies since, as we will see in the
following sections, it is able to reconstruct territorial clusters starting just from the
topological features of the network. Even if the nodes are not explicitly embedded
in space, when it comes to exploiting the aggregation features of the network, the
space emerges in the shape of sensible spatial domains. There are cases for which it
could be of interest to take explicitly into account the presence of space, and cancel
it in order to discover hidden interactions beyond the spatial correlations. To this
end, new modularity definitions have been recently introduced that include the
spatial factor (Expert et al. 2011; Cerina et al. 2012).

In the general case, valid for an un-weighted network, one usually chooses
P;; = kik;/2m, which allows one to take as a null model a random network with
the same degree sequence as the original network. In order to introduce spatial
features, the idea is to change the null model defined by P;; and to compare the
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actual network with this null model. Recently, such a proposal was made by Expert
et al. (2011), who obtained the quantity P;; directly from the data describing the
network. More precisely, Expert et al. adopted the following form:

PL — NN (dy)

where N; is related to the importance of the node i (such as the population, for
example) and fis the probability to have two nodes i and j connected at the distance
d;j. This form recalls the gravitational model for traffic flows, where flows are
directly proportional to the product of populations and, inversely, to the distance. In
this specific case, extracting the node spatial dependencies from the real link
distribution present in the network data is the most effective way to subtract the
spatial component. Otherwise if there are any correlations between space and node
attributes, the data contains in an unknown proportion information on both space
and attribute and the method needs to be reformulated. One possible way to
overcome this problem is to explicitly determine a spatial dependency of the link
distribution and to put it as an independent factor in the optimization function
definition. In order to be able to deal with the correlated case and to remove spatial
effect only, one can introduce the following explicit function of space for P;;

; 1
Spatial
PP = S kikig (di)
where Z is the normalization constant, k; the degree of the node i, d;; the Euclidean

distance between node i and node j. The function g(d) decreases with distance and
its role is to remove the spatial effect. A simple form of g(d) is chosen as follows

g(d) _ €7d/<1>

where </> is the average Euclidean distance between nodes in the network. Of
course, </> is a rough approximation of the typical community size, but it is
enough to capture the essence of the spatial signature of the network. In the next
section we present a case study for the application of network community detection
methodology in the field of regional planning.

3.5 Community Detection in Spatial Social Systems:
Regionalisation and Commuter Networks

Planning urban settlements is considered a complex process because it concerns
several intertwined issues (Hinloopen et al. 1983). The complexity of urban and
territorial phenomena makes this task even harder. Planners and scholars now have
access to new tools derived from complexity science. Among various techniques
and tools, Complex Networks paradigm, and network community detection
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methods provide valuable instruments to solve classical problems of regionaliza-
tion, i.e. the assessment of appropriate territorial units (Duque et al. 2007).

In this paragraph we review the case study of delimitation of provinces in the
Region of Sardinia as proposed by De Montis et al. (2013) using network commu-
nity detection techniques applied to commuter networks. Although we show that
community detection methods are useful tools to plan homogenous territorial units,
it is worth noting that planners need to check and combine models’ results with
political goals (Palermo 1980).

3.5.1 Devolution and Regionalisation in the Italian
Provinces

Modern states are constantly in search of optimal internal administrative configu-
rations in order to optimise resources and provide more efficient services to their
citizens. Devolution? is the concept at the base of this process which has also been
achieved through in-between administrative sub units. In the European Union there
are four levels of in-between units: regional (NUTS 2 units) and local bodies
(NUTS 3, LAU 1 and LAU 2 units).” Historically in Europe those in-between
districts have different names and carry out different tasks: in France “Le
departement” dates back to the Napoleonic age, counties are part of the Anglo-
Saxon tradition, ‘“Regierungsbezirk” in Germany, “Provincia” in Italy,
“Disputaciones” in Spain. Those sub divisions are identified according to both
normative and analytical regulations. In fact sub administrative units have similar
spatial and demographic features; for instance in Italy a province is identified as an
administrative body with a population from 100 to 500,000 citizens which live at a
like distance around a big town. In this paper we focus on the Italian administrative
hierarchical organization. The case study that we discuss is based on the application
of a network community detection method for the recognition of productive, social
and administrative territorial units in Sardinia (De Montis et al. 2013). As of 2012,
Italy is divided into 20 regions (Regione in Italian) that are further divided into
110 provinces (Provincia) and 8,100 municipalities (Comune).

Nevertheless while regions and municipalities kept a strong configuration since
they have been founded, provinces with changing fortunes and cyclical successes
assumed different roles and strategies in the Italian territorial organization. During
the 60s, 70s and 80s, the institution of new in-between bodies similar to provinces
but smaller such as “comprensori”, “comunita montane” (mountain community),
“unita sanitarie” (health districts), “distretti scolastici” (school districts), raised the
discussion about which body could better represent and meet the demands of local

2 Devolution is the process used by a central state to grant power to sub national administrative
levels such as regions, counties, provinces etc.

*NUTS and LAU are two classifications introduced by EUROSTAT for dividing up EU territory.
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communities. “Provincia” is an administrative body with functions of (i) economic-
financial planning, (ii) territorial planning, and (iii) promotion and coordination of
projects among groups of municipalities. A recent adjustment of the legal institute
of Italian provinces was published in 2000 (“Testo Unico degli Enti locali”’). With
this last act, the central government assigned the following duties to provinces:

« Equality;

¢ Autonomy;

* Relevance of constitutional governmental power;
* Subsidiarity;

» Sustainability;

e Self-sufficiency.

Thus Provincial bodies have been granted power for administrative functions
that regard spatial regulations. Those functions pertain to: land protection, land
enhancement, prevention of natural disasters, management of water resources,
energy development, enhancement of cultural heritage, transport infrastructures,
protection of fauna and flora, hunting and fishing, waste management and school
building. This shift in power from the central government gave to local communi-
ties, which are more knowledgeable about citizens’ needs, more independence. The
Italian central government has met a growing request for devolution which has also
resulted in creating new provinces. Since their institution the number of provinces
has always increased: in the last 20 years, seven new provinces have been
established. This administrative reorganisation has generated a new map of the
Italian national administrations. Nevertheless, the administrative devolution has
introduced new problems, such as redundant duties carried by different bodies at
different levels (regional, provincial and local administrations) and the waste of
public money. Under this background, in 2001 the Region of Sardinia decided to
double the number of Provinces to eight units. In this manuscript we discuss a
method to verify the goodness of the new regional administrative configuration of
Sardinia. The results that we present are based on a case study by De Montis
et al. (2013).

3.5.2 Regionalisation and Commuting Networks in Sardinia,
Italy

Sardinia is the second largest Mediterranean island with an area of approximately
24,000 km? and 1,600,000 inhabitants. Its geographical location and morphological
features have fostered an important history of commercial and cultural relations
with international communities. As of 2012 the island is partitioned into eight
provinces and 377 municipalities. The Sardinian economy is progressively losing
competitiveness compared to other Italian regions and other European countries.
Sardinia is nevertheless in a slightly better position than average southern Italian
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regions (the poorest part of Italy). The Sardinian economy is primarily based on the
tertiary sector (67.8 % of employment), with commerce, services, information
technology, and especially tourism, which represents the main industry of the island
with 2,721 firms (Banca d’Italia 2012).

According to recent studies (De Montis et al. 2007, 2011), the inter-municipal
commuting system of Sardinia, (i.e. the daily movements of workers and students)
can be conceived as a network. The Sardinian inter-municipal commuting network
(SMCN) is composed of a set of vertices corresponding to towns, and a set of edges
representing the flow of commuters between towns. The SMCN is undirected and
weighted. The weight of each link represents the number of commuters that
generally move between two municipalities. The SMCN is built using information
from the national census (ISTAT). SMCN’s characteristics can be summarized as
follows:

e The SMCN is similar to a small-world random graph in terms of topology
(i.e. connectivity). However the level of local interconnection between nodes
diverges from usual random networks and is like typical technological networks.
These networks show a hierarchy of nodes. In the case of SMCN small munic-
ipalities are locally densely interconnected. Moreover the SMCN may be defined
as a disassortatively mixed network (Newman 2000), where hub nodes prefer-
entially connect to nodes with a low connectivity and centrality ranking.

* The SMCN behaves as a scale-free network when it is conceived as a weighted
network. The analysis of probability distributions of weights and strengths (the
sum of weights’ links attached to each node) fit a power-law. The traffic is thus
gathered on a few links. This signals the presence of hub-behaviour over the
busiest travelled nodes.

In Fig. 3.1, we report a geographical representation of the SMCN in the years
1981, 1991 and 2001. The networks were pruned of the less important links
(connections with a few commuters compared to the average values). It is worth
mentioning that the system has strongly improved its topological structure becom-
ing more complex as time passes. This can be explained by looking at some
improvements in the Sardinian economy, for example an increase in the number
of cars owned, upgrades in infrastructure (especially for the road system, less for the
rail system) and the per capita income.

The research idea that we discuss in this essay is based on the concept that
network communities can be seen as productive basins of mobile agents. Commuter
movements generate diversified scenarios depending on socio-economic peculiar-
ities of the territory involved. Censis (2008) showed a positive correlation between
the level of commuting in a territory and GDP. Richer regions have higher per-
centage of commuters. On the contrary, a negative correlation is detected between
number of commuters and unemployment rate. The structure of commuter basins
provides a functional redefinition of the administrative and cultural divisions based
on the idea that the strongest interrelationships link administrative units that belong
to the same cluster (i.e. municipalities are clustered into provinces). In order to
understand the composition and significance of network commuting communities,
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Fig. 3.1 Geo-referred representation of the SMCN in 1981 (left), 1991 (centre) and 2001 (right)
(Source: De Montis et al. (2013))

we confront them with administrative and cultural divisions, such as provinces,
“Piano di Rinascita” units, “Comprensori”, “Profili d’Area” and Historical regions.
Fifteen territorial units were proposed with “Piano di Rinascita” during the 1960s.
In the 70s, 25 Comprensori were conceived and designed (although they were never
made official): Comprensori represented a new intermediate administrative level
between Regione and Comuni (municipalities). The historical regions are homo-
geneous geographical areas that group together Sardinian municipalities with a
similar history, language, and cultural identity.

De Montis et al. (2013) applied the network community detection method
proposed by Blondel et al. (2008) to the SMCN and correlate the results with the
above mentioned administrative units. Figure 3.2 visually overlays the limits of
provinces before the 2001 reform (old provinces) and after (new provinces) with the
eight communities detected by the Blondel method for the SMCN in 2001.*

The Adjusted Rand Index (Hubert and Arabie 1985) was used in order to
quantitatively assess similarities between the Lauvain and the administrative par-
titions. Results show that the highest similarities of Lauvain partition are with the
new configuration of provinces and Profili d’Area. The highest similarities are
detected in the SMCN’s partitions of years 1991 and 2001. In brief, we can assert
that the recent institution of the four new provinces better suits the actual socio-
economic dynamics of the Sardinian territory. With this case study, we have shown
that community detection methods are helpful tools in spatial and urban planning.
They provide guidance for analysts, planners and stakeholders to read, understand
and depict territorial dynamics. Such models and methods applied to planning

4See De Montis et al. (2013) for further visualisations and results on Comprensori, Piano di
Rinascita, Profili d’Area, historical regions and communities detected over the SMCN.
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Fig. 3.2 Overlay of SMCN communities with old and new provinces (Source: De Montis
et al. (2013))

cannot replace the work of analysts but can facilitate to unearth and implement
solutions for complex spatial problems in regional planning.

3.6 Conclusion

In this chapter, we have presented and illustrated evidence of a case study regarding
the detection of commuters’ communities in Sardinia starting from the character-
ization of a social network sui generis, where nodes stand for origin and destination
towns and edges correspond to commuting flows between them. We have verified
that SMCN exhibits properties typical of other social networks. The presentation of
the case study is provided with a review of (i) applications of CNA to social and
R&D networks that show a clear reference to space, (ii) recent integration between
spatial and network analysis fields and (iii) the last acquisitions in the field of
community detection methodologies adopted to partition, in particular, spatial
networks.

The development of the case study application demonstrates that the applied
community detection methodology is able to profile homogeneous and contiguous
clusters of municipalities that are commuters’ basins which generally mirror pro-
vincial bodies. In a backward looking vein, this method has allowed us to spot
critical situations arising from spatial discrepancies between commuter’s basins
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and other relevant partitions historically adopted by planners. In a forward looking
perspective, community detection proves to be a tool able to support planners in
shaping ideal spatial units or subdivision, a very important issue for regionalization
and regional planning.

In supporting the foregoing remarks for the unforeseeable future, Complexity
and Complex Network theory have to be more integrated into urban and regional
planning methods. This can be achieved through an extensive application of these
concepts to model urban phenomena. This practice might change the perceptions of
urban phenomena and the manner that urban planning is practiced. The case study
presented in this manuscript is one of the first attempts for a fruitful integration
between the complex network paradigm and regional science. This case study
encourages us to extend the analysis by including an economic framework into
the analysis. We would like to verify whether the detected clusters are also
economically sustainable. Furthermore, the method needs to be validated in other
realms, both in other Italian regions and in international settings.
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Chapter 4

Determinants of Cross-Regional R&D
Collaboration Networks: An Application
of Exponential Random Graph Models

Tom Broekel and Matté Hartog

Abstract This study investigates the usefulness of exponential random graph
models (ERGM) to analyze the determinants of cross-regional R&D collaboration
networks. Using spatial interaction models, most research on R&D collaboration
between regions is constrained to focus on determinants at the node level (e.g. R&D
activity of a region) and dyad level (e.g. geographical distance between regions).
ERGMs represent a new set of network analysis techniques that has been developed
in recent years in mathematical sociology. In contrast to spatial interaction models,
ERGMs additionally allow considering determinants at the structural network level
while still only requiring cross-sectional network data.

The usefulness of ERGMs is illustrated by an empirical study on the structure of
the cross-regional R&D collaboration network of the German chemical industry.
The empirical results confirm the importance of determinants at all three levels. It is
shown that in addition to determinants at the node and dyad level, the structural
network level determinant “triadic closure” helps in explaining the structure of the
network. That is, regions that are indirectly linked to each other are more likely to
be directly linked as well.
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4.1 Introduction

There is growing scientific interest in the creation of knowledge and its diffusion
among organizations. In the new growth theory, new knowledge is regarded as
being pivotal to economic growth by generating increasing returns (Romer 1990).
In evolutionary economics, the re-combination of existing knowledge from differ-
ent sources is argued to be crucial for new innovations to occur (Nelson and Winter
1982). These theories and the according empirical evidence also impacted the
policy level. For instances, one of the most well known policy instruments to
stimulate knowledge diffusion and innovation are the Framework Programmes of
the European Union. These programs have been in existence since 1984 and are
used to fund thousands of collaborative research projects between organizations in
the EU.

Such R&D collaboration networks, which are induced by policy, alter the spatial
diffusion of knowledge. This put the investigation of their spatial structures on the
agenda of regional economists and economic geographers (Autant-Bernard
et al. 2007). The geographical structures of inter-organizational collaboration
networks are frequently analyzed from an organizational perspective (cf. Giuliani
and Bell 2005) and a regional perspective, the latter focusing on cross-regional
R&D collaboration networks (cf. Scherngell and Barber 2009, 2011; Hoekman
et al. 2010). In order to investigate factors explaining the structure of cross-regional
networks, most commonly used are spatial interaction models, which allow for
considering factors at the node and dyad level. An example of a factor at the node
level is the size of a region that matters as regions with more organizations are also
more likely to have links to regions elsewhere. At the dyad level, most attention has
been paid to the effect of geographical distance, which has been found to have a
negative impact on the chance of research collaboration (cf. Ponds et al. 2007;
Scherngell and Barber 2009; Hoekman et al. 2009, 2010).

In addition to the node and dyad level, factors at the structural network level may
also be important, though. That is, the creation of new links might not only depend
on attributes of regions or region pairs, but may also be influenced by the existing
structure of the cross-regional network. For instance, a key hypothesis in organi-
zational network science is the tendency towards triadic closure (or transitivity),
which implies in this context that regions, which are indirectly linked, are more
likely to link themselves as well. However, factors at the structural network level
cannot be included in spatial interaction models.

This chapter presents exponential random graph models (ERGM) as an alterna-
tive empirical tool to investigate this. These models have been developed in
mathematical sociology in recent years (Snijders et al. 2006; Robins et al. 2006,
2007; Wang et al. 2012) and are increasingly used across scientific disciplines, for
example in bioscience (Saul and Filkov 2007), political science (Desmarais and
Cranmer 2012) and organization science (Uddin et al. 2012). The advantage of
these models is that they allow for simultaneously estimating the effect of factors at
the node, dyad, and structural network level for networks that are observed at one



4 Determinants of Cross-Regional R&D Collaboration Networks 51

point in time. We illustrate the usefulness of ERGMs by exemplarily investigating
the structure and its determinants of the cross-regional R&D collaboration network
in the German chemical industry between 2005 and 2010.

The study is structured as follows. The second section gives an overview of the
literature on spatial structures of R&D collaboration networks and their determi-
nants. This includes a brief discussion of factors at the node, dyad, and structural
network level that may impact network structures. The third section elaborates on
the exponential random graph model that we subsequently use to investigate the
structure of the cross-regional network. We present the empirical data in the fourth
section. It is followed by the discussion of the results in the fifth section and some
concluding remarks in the sixth section.

4.2 Determinants of Cross-Regional R&D Collaboration

The structural determinants of cross-regional R&D collaboration networks can be
distinguished at three different levels. These are the node level, the dyad level, and
the structural network level. In the following, we elaborate on the factors effective
at these three different levels.

Node level factors are properties of network entities themselves. With respect to
regional R&D collaboration networks, regions’ size and research intensity are
particularly important. Regions with more organizations can be expected to have
more ties because they have more collaboration opportunities. Such a size effect
also applies at the firm level, as large organizations are likely to have more ties than
small organizations because their position in the industry is more prominent and
have more resources at their disposal to create and maintain ties. For instance,
Boschma and Ter Wal (2007) find that larger organizations are more central in the
knowledge network of footwear producers in Barletta. Secondly, the research
intensity of organizations in a region matters. At the firm level, Giuliani and Bell
(2005) show that organizations with a more advanced knowledge base are more
frequently approached by other organizations to exchange knowledge because they
are perceived to be ‘technological leaders’. A similar argument can be applied to
the regional level: the research intensity of a region is generally characterized by a
large number of R&D employees, many organizations being engaged in R&D-
intensive activities, and by the presence of universities or other research institutes.
These characteristics are likely to increase the number of research collaboration
links organizations have with other organizations in the same region (regional
collaboration) as well as with organizations located elsewhere (cross-regional
collaboration), with the latter representing a region’s (degree) centrality in the
cross-regional collaboration network. Accordingly, it can be expected that the
absolute numbers of regional and cross-regional links are strongly correlated.

Factors at the dyad level are characteristics of relationships between two entities
(nodes) in a network. In the context of the paper it refers to the relation between two
regions. A key idea in sociology is that entities are more likely to link when they
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have similar attributes, known as homophily effect (McPherson et al. 2001). For
instance, regions with organizations that operate with similar routines and under
comparable incentive mechanisms are more likely to be linked in R&D collabora-
tion. Another example are universities, which are subject to different incentive
frameworks than firms when it comes to knowledge creation and diffusion as they
aim to publish new knowledge, whereas firms have an incentive to keep new
knowledge secret. Hence, because of their institutional proximity (Metcalfe
1995), universities are more likely to collaborate with others and especially with
other universities (cf. Broekel and Boschma 2012; Broekel and Hartog 2013). This
is likely to translate to the regional level as regions rarely house more than one
university. Accordingly, university regions have a higher likelihood of being linked
to each other.

In addition to institutional proximity, other forms of proximity may also be
relevant, namely: geographical proximity, technological proximity, and social
proximity. Many studies confirm that cross-regional R&D collaboration is more
likely when regions are located close to one another in space (e.g. Maggioni
et al. 2007; Scherngell and Barber 2009; Hoekman et al. 2009, 2010). This may
be due to a variety of reasons, for instance geographical proximity facilitates face-
to-face contact, which stimulates the diffusion of information about potential
collaboration partners. The likelihood of cross-regional R&D collaboration is
shown to increase when regions have similar technological profiles and specializa-
tions (Fischer et al. 2006; LeSage et al. 2007; Scherngell and Barber 2009). A
potential explanation is that organizations are more prone to collaborate with
organizations with related knowledge assets. Similar technological profiles (tech-
nological proximity) ensure that two organizations can easily communicate and
learn from each other (Cohen and Levinthal 1990; Nooteboom 2000). Social
proximity may also increase the likelihood of R&D collaboration (cf. Autant-
Bernard et al. 2007). People already knowing each other find it easier to develop
trust-based relations, which in turn facilitate knowledge exchange and ease inter-
actions across regional boundaries (Maskell and Malmberg 1999; Sobrero and
Roberts 2001; Breschi and Lissoni 2009).

In addition to these factors at the node and dyad level, factors at the structural
network level may also matter for the structure of cross-regional R&D collabora-
tion. Such factors relate to properties of the entire network. Three factors are
commonly put forward in this context: triadic closure (transitivity), multi-
connectivity, and preferential attachment (cf. Ter Wal and Boschma 2009; Gliickler
2010). Triadic closure predicts that partners of organizations are likely to become
partners themselves as well. As a result, a network will consist of many triangles,
i.e. dense cliques of strongly interconnected organizations (Ter Wal 2011). Such
cliques can be regarded as a sign of social capital (Coleman 1988) that may enhance
trust and willingness among actors to invest in mutual goals, such as research
collaboration. In contrast, multi-connectivity suggests that organizations will con-
nect to others in multiple ways to decrease the dependency on a single link. It
implies that multiple paths are formed amongst organizations leading to multiple
reachability. Evidence for this is found in the creation of inter-firm alliances
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between US biotech firms (Powell et al. 2005). Preferential attachment means that
organizations with many links are more likely to create or attract new links in the
future. If a network is shaped by this factor, its degree distribution follows a power
law (Barabasi and Albert 1999). Gulati (1999) shows that in the case of multina-
tional firms, the likelihood of creating new alliances increases the better organiza-
tions are connected in the network. Hence, the network of alliances among
multinational firms is subject to preferential attachment processes.

In contrast to most of the discussed factors at the node and dyad level, these
factors are not regional in nature. Concepts like transitivity, preferential attachment
or reciprocity do not apply to the regional level. However, in most empirically
observed cross-regional networks, links are constructed from regionally aggregated
inter-organizational relations. To the extent that these inter-organizational relations
involve organizations being located in different regions such effects will naturally
be translated to the cross-regional network. Accordingly, they need to be taken into
account when analyzing the network structure as multi-connectivity, preferential
attachment, and triadic closure also shape the empirically observed cross-regional
networks.

To estimate the relative impact of the above factors on the structure of a network,
they need to be simultaneously incorporated in the empirical model. This is not
possible with the models most frequently used to investigate cross-regional collab-
oration: spatial interaction models in general and gravity models in particular
(cf. Scherngell and Barber 2009). These models can account for factors at the
node and dyad level. However, they cannot be used to evaluate factors at the
structural network level. In light of the theoretical relevance of factors at the
structural network level, we therefore argue that network analysis modeling tech-
niques represent a powerful alternative because they are able to simultaneously
incorporate factors at all three levels.

When longitudinal data is available, a stochastic actor-based network approach
can be used. It models the change of a network from one point in time to another as
part of an iterative Markov chain process (see for technical details: Snijders
et al. 2010). When it comes to the analysis of research collaboration networks of
regions, however, such an approach is less useful. By aggregating collaboration
data to the regional level and creating cross-regional networks, researchers gener-
ally are interested in approximating the relational interaction structures of regions
and investigate their structures and determinants. Such networks are unlikely to
drastically change within short time periods, though, as they are results of long-term
social, regional, and industrial evolution processes. Hence, even when longitudinal
data on these cross-regional networks structures are available, it is unlikely to cover
a sufficiently long time period. It may include multiple time periods (years) and
thereby principally allow for employing longitudinal network analysis to study
changes in the underlying cross-regional interaction structures." However, the

! The relational data derived from the 5th, 6th, and 7th EU-Framework Programmes are (currently)
a good example in this respect. While they represent longitudinal data, it covers only a limited
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results generated with stochastic actor-based network approaches are unlikely to
yield meaningful insights because the empirically observed changes in the network
structures are dominated by short-term fluctuations that are of little interest to the
researcher. We therefore argue that exponential random graph models are the
preferred option when investigating the structure of cross-regional interaction on
the basis of data with a cross-sectional nature and factors at the structural network
are to be considered. We elaborate on these models in the next section.

4.3 Exponential Random Graph Models

Exponential random graph models are stochastic models that approach link creation
as a time-continuous process. They regard a network observed at one point in time
as one particular realization out of a set of multiple hypothetical networks with
similar properties. This allows applying these models to purely cross-sectional
network data.

The aim of exponential random graph models is to identify factors that maximize
the probability of the emergence of a network with similar properties as the
structure of the observed network. The general form of exponential random graph
models is defined as follows (Robins et al. 2007):

iy =) = (1) e { 3 2400 | (@)

where Pr(Y = y) is the probability that the network (Y)) generated by an exponential
random graph is identical to the observed network (), x is a normalizing constant
to ensure that the equation is a proper probability distribution (summing up to 1), 74
is the parameter corresponding to network configuration A, and ga (y) represents
the network statistic. Network configurations can be factors at the node level, dyad
level and structural network level.

Estimation of the parameters is done with maximum pseudo likelihood or a
Markov Chain Monte Carlo Maximum Likelihood Estimation procedure. The latter
has been developed most recently and is regarded as the preferred procedure as it is
often most accurate (Snijders 2002; Van Duin et al. 2009). It is based on the
generation of a distribution of random graphs by stochastic simulation from a
starting set of parameter values, and subsequent refinement of those parameter
values by comparing the obtained random graphs against the observed graph. This
process is repeated until the parameter estimates stabilize. If they do not, the model
might fail to converge and hence becomes unstable (see for technical details,
Handcock 2003; Hunter et al. 2008).

time-period (1998-2013). Of course, this may change when data on future programs will become
available.
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Checking whether the parameters predict the observed network well,
i.e. evaluating a model’s goodness of fit, is done by comparing the structure of
the simulated networks to the structure of the observed network. According to
Hunter et al. (2008), the comparison consists of the degree distribution, the distri-
bution of edgewise shared partners (the number of links in which two organizations
have exactly k partners in common, for each value of k), and the geodesic distri-
bution (the number of pairs for which the shortest path between them is of length k,
for each value of k). The more the distributions of the simulated networks are in line
with those of the observed network, the more accurate are the parameters of the
exponential random graph model. In the next section, we construct an exponential
random graph model to investigate the structure of the network of subsidized R&D
collaboration in the German chemical industry.

4.4 Determinants of Cross-Regional R&D Collaboration
in the German Chemical Industry

4.4.1 Data

We analyze R&D collaboration that has been funded by the German federal
government. As in most other advanced countries, the government actively sup-
ports public and private R&D activities with subsidies. While the Federal Ministry
of Education and Research (BMBF) is the prime source of subsidies, the Federal
Ministry of Economics and Technology (BMWi) and the Federal Ministry for the
Environment, Nature Conservation and Nuclear Safety (BMU) contribute as well.
The federal ministries publish comprehensive information about subsidized pro-
jects in the so-called “Forderkatalog” (subsidies catalog). This catalog contains
detailed information on more than 150,000 individual subsidies that have been
granted between 1960 and 2012. The catalog also includes information on the
cooperative nature of projects. It specifically indicates if projects are joint projects
realized by consortia of organizations. Participants in joint projects agree to a
number of regulations that guarantee significant knowledge exchange between the
partners. Accordingly, two organizations are defined to cooperate if they participate
in the same joint project. Hence, the original network is a two-mode network
(project-organizations links), which we transform into a one-mode projection of
the network (organization-organization links). All organizations can be assigned to
labor market regions allowing for regionalizing the network (see for more details on
the data Broekel and Graf 2012). The data is comparable to the EU Framework
Programmes (EU-FP) data by and large, which is extensively used to model
research collaboration networks (cf. Scherngell and Barber 2009). In contrast to
the EU-FP data, the data at hand exclusively covers collaboration between German
organizations.
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To construct the network of subsidized R&D collaboration in the German
chemical industry, we first identify all firms in the data that are classified as being
involved in the 2-digit NACE code C20 ‘Manufacture of chemicals and chemical
products’. Subsequently, all cooperative projects are extracted in which at least one
of these firms participates. On the basis of the joint appearance in a project, we
construct the inter-organizational network among all chemical firms participating in
these projects. We only consider links among firms: links to universities, research
organizations, associations, and to firms belonging to other industries are excluded.
We believe that this approach provides the most conservative picture of the
(subsidized) R&D collaboration network in the chemical industry. Alternatively
one may consider all organizations active in joint projects in which at least one firm
of the chemical industry is participating. However, such seems to be a very broad
definition of an industry-specific network, which makes the definition of appropri-
ate empirical variables more difficult. We acknowledge that the links to organiza-
tions in other industries are also likely to shape the intra-industry network, but as
our main focus is on the impact of the factors at the three different levels (node,
dyad, structural) rather than on knowledge exchange as such, we leave this for
future research.

The corresponding inter-organizational undirected network is subsequently
aggregated to the regional level using information on organizations’ location in
the 270 German labor market regions. The 270 labor market regions are defined by
the German Institute for Labor and Employment (e.g. Greif and Schmiedl 2002).
We construct the network that existed between 1 January 2005 and 31 December
2010. In this period, 775 projects were subsidized in which at least one firm of the
chemical industry was involved. These projects are split into 975 individual funds
allocated to 557 German firms belonging to the chemical industry.” 133 of the
775 projects are joint projects, which involve on average 2.8 firms. The resulting
cross-regional R&D collaboration network is shown in Fig. 4.1.

The network is dichotomized, as we are only interested in whether or not a link
exists between regions. The figure shows that the large agglomerations of the Ruhr
Area, Frankfurt am Main, and Munich are important nodes in the network. In
addition, a number of central regions are located along the Rhine River in the
west. The region of Dresden is a central node in East Germany. All these regions are
well-known centers of the chemical industry in Germany. Some additional descrip-
tive statistics of the network are presented in Table 4.2 in the Appendix.

2 This figure is based on the number of executing organizations (“Ausfiihrende Stelle”) as given in
the data. Many of these organizations are part of larger organizations. This has however little
relevance for the results as all data are aggregated to the regional level.
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Fig. 4.1 Network of
subsidized R&D
collaboration among firms
in the German chemical
industry (2005-2010)

Hamburg

Berlin

“Miinchen

4.4.2 Construction of Empirical Variables

Node Level Variables

The most important node-level factors likely are the intensity of regional R&D and
innovation activities in the field of chemistry. Foremost, this is because undertaking
R&D activities is necessary to receive R&D subsidies. Regions with large R&D
activities are likely to host more organizations that are involved in R&D collabo-
ration. Moreover, such regions may also be the location of the most successful
innovators, which are preferred collaboration partners. We therefore consider the
number of applied patents in chemistry by regional organizations as proxy for the
intensity of regional R&D activities in this field. The regionalized data on patent
applications are published in Greif and Schmiedl (2002) and Greif et al. (2006),
which include applications to the German as well as to the European Patent Office,
with a correction for double counts. The patents are assigned to labor market
regions according to the inventor principle. The patent data is organized according
to IPC-classes, which is matched to the 2-digit NACE industry using the concor-
dance of Broekel (2007). Lacking the data for the years 2005-2010, we construct
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the first node-level variable as the summed number of patents of regional firms in
the field of chemistry in the years 2001-2005.> The variable is denoted as PATS.

We take into account the effect of urbanization by including population density
(POP) and the gross-domestic product (GDP) of a region in the year 2005. The
corresponding data are obtained from the German Federal Institute for Research on
Building.

Firms located in regions with strong public research infrastructure may also be
more likely to link across regions. For instance, being co-located with public
research institutes may induce knowledge spillovers and give better access to
highly qualified personnel (e.g. Fritsch and Slavtchev 2007). Accordingly, firms
in these regions may be more prone to conduct R&D, engage in R&D collaboration,
and be more successful in terms of innovation. In order to approximate this, we
measure regions’ public R&D infrastructure with three variables. The presence of
universities in a region is modeled by counting their numbers of graduates in natural
sciences in 2005 (UNI). Similarly, the analysis includes the number of employees
working in regional research institutes of the Max Planck Society (MPG) and the
Fraunhofer Society (FHG). More precise, only the numbers of employees working
in the ins}itutes’ technological or natural science institutes in the year 2005 enter the
analysis.

Dyad Level Variables

We construct three variables at the dyad level. We measure geographical proximity
with the physical distance between two regions’ geographic centers. The variable is
denoted as (GEO_DIST). The chance of two regions being linked is expected to
decrease with geographical distance. Geographical proximity frequently correlates
with social proximity (Boschma 2005), which needs to be considered in the
interpretation.

We also include the variable SAME_REG that has a value of 1 if both regions
are located in the same federal state (i.e. NUTS 1 region), and O if not. SAME_REG
not only accounts for geographical proximity. It is likely to represent institutional
proximity as well, as regions in the same federal state are probably similar in their
R&D-related institutional framework. The reason for this is the significant role the
federal level is playing in the German R&D landscape. For instance, each federal
state (“Bundesland”) is responsible for its own resource endowment of universities
and has its own R&D policies.

We also take into account that two regions with universities may be more likely
to be linked. Firms in such regions are probably structurally more similar than two

3 The latest version of the “Patentatlas” was published in 2006 and includes the patent data up to
2005. We use the aggregated numbers for 2001-2005 to minimize annual fluctuation.

*The employment numbers are relatively stable over time. Using data for a single year is therefore
considered appropriate.
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firms of which one is not located in a university region. It can be expected that firms
in university regions are more R&D intensive and technologically more advanced
as are more probable to benefit from knowledge spillovers (cf. Jaffe 1989). To take
this into account, we include the variable UNI_1, which has a value of one if both
regions have a university and zero otherwise.

Notably, we do not construct a measure of technological similarity, which has
been shown to make regions more likely to be linked (Scherngell and Barber 2009).
This is primarily motivated by data constraints. We analyze a network among firms
of the same industry aggregated at the regional level. Hence, for the construction of
a meaningful technological similarity measure we need information about the
technological profiles of all regional firms in the chemical industry. Unfortunately,
we miss such information and have to leave this issue to future research.

Structural Network Level Variables

We include four variables at the structural network level. Triadic closure
(or transitivity) is captured by the geometrically weighted edgewise-shared partner
statistic (GWESP-statistic: Snijders et al. 2006; Hunter et al. 2008). It measures the
number of triangles in the network whilst taking into account the number of links
that are involved in multiple triangles (multimodality) (see for details: Hunter
et al. 2008). It thereby captures how frequently two nodes are connected by a direct
link as well as by an indirect connection of length 2 (i.e. “two-path”) through
another node (e.g. Hunter 2007). If a positive coefficient is found for this statistic,
there is a tendency towards triadic closure in the network.

We consider the geometrically weighted dyad shared partner statistic (GWDSP),
which is an advanced version of the alternating k-two-path statistic put forward by
Snijders et al. (2006). It measures the extent to which a network shows a tendency
of nodes not directly linked to each other being at least indirectly linked. In other
words, the statistic approximates whether multiple paths exist between such nodes.
Accordingly, it captures multi-connectivity for nodes that are not tied directly.

Another variable at the network level is EDGES. It equals the number of links in
the network and should always be included in exponential random graph models.
Moreover, EDGES represents a so-called k-star(1) parameter. K-stars are essential
configurations in networks. For instance, a k-star(2), or 2-star, corresponds to three
nodes of which one is linked to each of the other two. Accordingly, a k-star(3)
shows as four nodes with one node being linked to the other three. A triangle,
i.e. three mutually connected nodes, logically includes three k-stars(2). This means
that these configurations are hierarchically related (cf. Snijders et al. 2006; Hunter
2007). While the EDGES parameter corresponds to a type of intercept parameter in
the model, it is especially useful when considering the GWDEGREE statistic
as well.

GWDEGREE is the geometrically weighted degree statistic, which helps model-
ing the observed network’s degree distribution. Notably, the statistic can also be
seen as an equivalent to the more traditional k-star statistic (Hunter 2007). When
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being considered alongside the EDGES statistic, GWDEGREE (broadly) allows
modeling preferential-attachment processes. More precise, if this statistic obtains a
positive coefficient it signals the presence of preferential-attachment and a negative
coefficient indicates anti-preferential attachment (Hunter 2007).

For all three statistics, GWESP, GWDSP, and GWD, decay parameters have to
be specified. Because few attempts have been made to systematically identify the
best fitting parameter combinations (cf. Wright 2010), researchers commonly rely
on a manual iterative trail-and-error process of estimating varying model specifi-
cations. These specifications differ in terms of included variables as well as decay
parameters of the GWDSP, GWESP and GWDEGREE statistics. This process ends
when the best fitting model is identified. The best fitting model is a model that is
stable and converges (when the Markov Chain Monte Carlo approach is used, the
parameter traces should be horizontal) and provides the most appropriate goodness-
of-fit statistics (matching degree, edgewise shared partners, and geodesic distribu-
tions) given the empirical data (observed network). In other words, the best fitting
model most accurately predicts the structure of the observed network.

Once this model is identified the final goodness-of-fit statistics and MCMC trace
plots are generated exclude all variables that are not significant at the 0.05 level in
the original model. These variables are excluded because they represent noise that
may distort the model and thereby bias the according statistics (cf. Wright 2010).
This “refined” model is used to generate all goodness-of-fit related statistics. We
present the best fitting ERG-model for the cross-regional R&D collaboration
network in the next section.

4.5 Results

Table 4.1 presents the results of the final, i.e. best fitting, model and those of its
refined variant. Included are factors at the node, dyad, and structural network level.
The model is stable and converges. Moreover, it is characterized by appropriate
goodness-of-fit statistics (matching degree, edgewise shared partners, and geodesic
distributions (Fig. 4.2 in the Appendix) and horizontal parameter traces (Figs. 4.3,
4.4, 4.5, and 4.6 in the Appendix).

Before we discuss the variables with significant coefficients, it is worthwhile to
take a brief look at the insignificant ones. The insignificance of GDP implies that
the economic prosperity of regions does not impact the structure of the cross-
regional R&D collaboration network in the German chemical industry. The mea-
sure of the absolute physical distance (GEO_DIST) between regions better captures
the effect of geographic distance than when considering whether two regions are
part of the same federal state (SAME_REG), as the latter’s coefficient is insignif-
icant while that of the first is not. The finding moreover questions the role of
institutional proximity, which we argued to be reflected by SAME_REG.

The measure of the network’s degree distribution (GWDEGREE) does not help
in explaining the structure of the network. This means that we do not find evidence
for preferential attachment processes, i.e. well-connected regions are not more
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Table 4.1 Results of exponential random graph model with dyad level, node level and structural
network level variables

Main model Refined model
Std. Std.
Variable Estimate error p-Value Sign.  Estimate error Sign.
Node level
PATS 0.00056 0.00013 < le-04 ™ 0.00028  0.00008
UNI —0.00069 0.00017 < le-04 —0.00119  0.00015
POP_DEN 0.00009 0.00004 0.022735 0.00022  0.00001
GDP —0.00113 0.00159  0.478296
MPG 0.00037 0.00011 0.000882 0.00071  0.00009
FHG 0.00064 0.00026 0.013101 °* 0.00135 0.00016
Dyad level
GEO_DIST —0.00164 0.00021 < le-04 —0.00072  0.00018
SAME_REG 0.07019 0.10950  0.521505
Nodematch. 0.30200 0.07094 < le-04 ™ 0.14760  0.07873 *
UNIL_1
Structural network level
EDGES —4.36800 0.17230 < le-04 ™ —7.24000 0.20440
GWESP, 1.04400 0.06772 < le-04 ™ 2.02 0.00902 "
0.69, fix
GWDEGREE  —2.86600 14.81000  0.846554
GWDSP, 0.02133 0.02736  0.435589
0.15, fix
Null 50343.3 on 36,315 degrees of freedom 50343.3 on 36,315 degrees
deviance: of freedom
Residual 1753.3 on 36,302 degrees of freedom 1619.3 on 36,305 degrees
deviance: of freedom
Deviance: 48589.0 on 13 degrees of freedom 48724.0 on 9 degrees
of freedom
AIC: 1779.3 1639.3
BIC: 1889.8 1724.3

“Significant at 95 %; " Significant at 99 %

prone to gain additional links than sparsely connected regions. The same applies to
the GWDSP-statistic suggesting that two regions without a direct link are unlikely
to be indirectly connected. Accordingly, we observe insignificant coefficients for
variables at all three levels (node, dyad, and structural network level).

Now, we turn towards the significant variables reported in Table 4.1. As
expected, regions with R&D intensive firms (PATS) tend to have more links. The
same applies to urban regions (POP_DEN) and regions in which institutes of the
Max-Planck (MPG) and Fraunhofer (FHG) societies are located. The according
coefficients of PATS, POP_DEN, MPG, and FHG are all positive and significant.
UNI obtains a negative significant coefficient suggesting that university regions
tend to have fewer links. While this contradicts our expectations, it is essential to
also consider the positive significant coefficient of the dyad-level variable UNI_1 in
the explanation. Accordingly, university regions generally have less links but they
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are more likely to link to other university regions. The latter is in line with our
expectations and signals the presence of a homophily effect.

The dyad-level variable GEO_DIST is characterized by a negative significant
coefficient. Hence, geographical distance hampers link creation, which confirms
existing empirical studies (cf. Maggioni et al. 2007; Ponds et al. 2007; Scherngell
and Barber 2009; Hoekman et al. 2009, 2010; Broekel and Boschma 2012).

We argued above that the main advantage of exponential random graph models
is their ability to take into account factors at the structural network level in addition
to factors at the node and dyad level. The significant coefficients of two variables at
the structural network level empirically confirm this level’s relevance. The coeffi-
cient of EDGES is negative and significant. By being similar to an intercept
variable, EDGES represents the overall density of the network when all other
effects are excluded. Its negative coefficient is a common feature of networks
established by social processes indicating that such networks tend to be less
dense than exponential random networks (cf. Varas 2007).

In addition, we find a positive and significant coefficient of the GWESP-statistic.
It means that triangles are a common feature of the network, which corresponding
to the visual inspection of the network (see Fig. 4.1). In other words, regions that are
directly linked are also more likely to link through indirect connections. Hence, the
result suggests that triadic closure is a driving force in the network formation
processes. There might however be an alternative explanation. When constructing
the empirical network, we transformed a bipartite network into a one-mode type.
Such transformation more or less automatically increases the likelihood of triplets
in the final one-mode network. Accordingly, the positive GEWSP-statistic might
pick up this effect and act as a kind of control parameter for the one-mode
projection procedure. However, we pointed out in Sect. 4.1 that on average less
than three firms (2.8) are jointly participating in a cooperative project. Hence, it is
most likely a combination of both effects that explains the statistic’s significance. In
any case, this structural network factors significantly helps in modeling the struc-
ture of the network.

In sum, we find that the structure of the network is best explained by factors at
the node level, dyad level, and structural network level. Moreover, the coefficients
(which can be translated into odd-ratios by taking the exponential) underline that in
comparison to factors at the dyad, factors at the structural network level have
greater explanatory power. It shows the crucial importance of these factors for
the structure of the cross-regional R&D collaboration network in the German
chemical industry. This result thereby also highlights the usefulness of exponential
random graph models as a tool for analyzing the structure of such types of networks.

4.6 Conclusion

The aim of this study was to discuss exponential random graph models (ERGM) as
promising tools for the investigation of cross-regional collaboration networks. We
pointed out that most existing studies focus on the evaluation of factors at the node
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and dyad level. However, network science suggests that factors at the structural
network level may also be relevant in this respect. Such factors cannot be consid-
ered in methods commonly applied in this context. For instance, spatial interaction
models allow only for factors at the node and dyad level. We argued that
ERG-models represent a powerful alternative as they take into account factors at
all three levels and require only cross-sectional network data.

We illustrated the application of ERGMs by analyzing the structure of the cross-
regional R&D collaboration network in the German chemical industry between
2005 and 2010. By using an exponential random graph model, we considered
factors at all three levels that might influence the network’s structure. At the node
level, it was shown that urban regions (reflected by population density) and regions
with high research intensities are more likely to be linked to other regions. At the
dyad level, we found regions to be more likely being linked when they have a
university. Moreover, our results confirmed the negative impact of geographical
distance on the likelihood of research collaboration. Finally, at the structural
network level, evidence was provided for the existence of a triadic closure (transi-
tivity) effect: regions that are indirectly linked to each other are likely to be directly
linked as well.

A challenge for future research is the projection of networks among individuals
and organizations to the regional level. This particularly concerns the question
about what factors impact link formation at the level of the individual (e.g. trust,
reciprocity), at the level of the organization (e.g. reputation, absorptive capacity),
and at the spatial (regional) level (e.g. image, collective identity). In the present
paper, and in most of the corresponding literature, these factors are all translated to
the same level, i.e. that of the chosen unit of analysis. However, this ignores their
relevance at different observational levels. For instance, a general finding is that
regions with high research intensity are more likely to be linked to each other, but in
theory it could be that the actual linkages between those regions are created by
organizations that in contrast to all other organizations in their respective regions,
show little or no research intensity (although this is unlikely). The same applies to
the factors at the structural network level. For instance, if three organizations in
three different regions link with each other a triangle will be observed in the
network that might suggest the presence of a triadic closure effects. However, if
two of the three organizations are located in the same region, the cross-region
network shows a single link instead, which does not supports this interpretation. In
this sense, the question of what is the most appropriate unit of analysis (and level of
aggregation) becomes evident. This clearly lays the path for future research focus-
ing on changing network structure when moving from one level of node aggrega-
tion to another. Researchers will have to adjust the level of node aggregation in
correspondence to the objective of their investigation until reliable insights on this
matter are available.

Clearly, the study is only a first step towards understanding the role factors at the
structural network level play for the formation of cross-regional collaboration
networks. It nevertheless underlines the usefulness of exponential random graph
models for future research endeavors on this subject.
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Fig. 4.2 Goodness of fit of exponential random graph model with dyad level, node level + struc-
tural network level variables
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Table 4.2 Descriptives of empirical variables

Variables n Mean St. deviation Median Min Max Skew  Kurtosis
PATS 270  69.55 199.12 12.48 0 1,691.31 5.34  32.55
POP_DEN 270 82535 1,265.19 244.5 40 8,523 3.06 11.44
GDP 270  40.46 33.58 26.75 14.1 296.9 3.66 19.83
UNI 270 101.51 244.73 0 0 1,812 3.46 15.55
MPG 270  49.12 248.08 0 0 3,438 10.20 128.50
FHG 270 30.81 123.52 0 0 978 522  29.24
GEO_DIST 72,900 379.81 186.03 368.54 0 977.45 0.29 —-0.52
SAME_REG 72,900 0.11 0.31 0 0 1 2.49 4.22
UNIL_1 72,900 0.62 0.49 1 0 1 -047 —-1.77
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Chapter 5

A Novel Comprehensive Index of Network
Position and Node Characteristics

in Knowledge Networks: Ego Network

Quality

Tamas Sebestyén and Attila Varga

Abstract While developing the comprehensive index of Ego Network Quality
(ENQ) Sebestyén and Varga (Ann Reg Sci, doi:10.1007/s00168-012-0545-x,
2013) integrates techniques mainly applied in a-spatial studies with solutions
implemented in spatial analyses. Following the theory of innovation they applied
a systematic scheme for weighting R&D in partner regions with network features
frequently appearing in several (mostly non-spatial) studies. The resulting ENQ
index thus reflects both network position and node characteristics in knowledge
networks. Applying the ENQ index in an empirical knowledge production function
analysis Sebestyén and Varga (Ann Reg Sci, doi:10.1007/s00168-012-0545-x,
2013) demonstrate the validity of ENQ in measuring interregional knowledge
flow impacts on regional knowledge generation. The aim of this chapter is twofold.
First we show that ENQ is an integrated measure of network position and node
characteristics very much resembling to the solution applied in the well-established
index of eigenvector centrality. Second, we test the robustness of the weighting
schemes in ENQ via simulation and empirical regression analyses.

5.1 Introduction

Network analytic tools have been increasingly employed in studying the flows of
knowledge in two, more or less separately developed scientific literatures. ‘A-
spatial’ approaches mostly appearing in the science and technology literature
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study the impacts of different characteristics such as size, centrality, density, tie
strength or knowledge diversity of collaboration networks among firms, research
institutions and alike. The influence of different network characteristics are exam-
ined individually and the selection of particular network features studied is usually
related to actual research questions and do not seem to follow an underlying
theoretical agreement in the field.

On the other hand, several of the ‘spatial’ studies appearing in the regional
economics and economic geography literature show a different origin and a some-
what different interest. The focus of this literature is not much on the architecture of
knowledge networks but more on the characteristics of network partners. Knowl-
edge level of network partners is considered their main feature determining the flow
of knowledge through networks. This empirical approach is significantly influenced
by spatial econometric techniques applied in some of the first papers studying the
geography of knowledge flows (e.g., Anselin et al. 1997). Many of the spatial
network studies apply the same intuition by replacing spatial weights matrices
with matrices representing interregional collaborations. With this technique it
became possible to study the impact of R&D carried out by partners in different
spatial units on knowledge produced in the region (Maggioni and Uberti 2011;
Varga et al. 2013; Ponds et al. 2010).

While developing the comprehensive index of Ego Network Quality (ENQ)
Sebestyén and Varga (2013) integrate techniques mainly applied in a-spatial studies
with solutions implemented in spatial analyses. Following the theory of innovation
they applied a systematic scheme for weighting R&D in partner regions with
network features frequently appearing in several (mostly non-spatial) studies
(such as tie strength, number of edges, density of interactions, network distance,
knowledge diversity).

The resulting ENQ index thus reflects both network position and node charac-
teristics in knowledge networks. This index is a measure of knowledge accessible
by the agents from their interregional network. Thus the interest behind ENQ is the
same as in the spatial studies (i.e., the impact of R&D in partner regions). The
difference is in the broader set of network features that we take into account in the
analysis. Applying the ENQ index in an empirical knowledge production function
analysis Sebestyén and Varga (2013) demonstrate the validity of ENQ in measuring
interregional knowledge flow impacts on regional knowledge generation.

The aim of this chapter is twofold. First we show that ENQ is an integrated
measure of network position and node characteristics very much resembling to the
solution applied in the well-established index of eigenvector centrality. Second, we
test the robustness of the weighting schemes in ENQ via simulation analyses and
empirical regressions.

The second section introduces the concept of ENQ. The third section positions
ENQ in traditional network centrality measurement. Results of simulation analyses
with respect to the robustness of the weighting schemes applied in the formula of
ENQ are reported in the fourth section. The fifth section presents some empirical
underpinning of the simulation results, while summary concludes the chapter.
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5.2 The Ego Network Quality Index

The theory of innovation emphasizes the role of interactions among different actors
in innovation. These interactions follow a system and the characteristics of the
system determine the efficiency of new knowledge production to a large extent
(Lundvall 1992; Nelson 1993). An extensive survey-based empirical literature
evidences that innovation is indeed a collective process where the knowledge and
expertise of partners as well as the intensity of collaborations among them largely
determine the production of new, economically useful knowledge (e.g., Diez 2002;
Fischer and Varga 2002). Representing actors as nodes and their connections as
ties, interactions of collaborating agents can be mapped as a network. On the basis
of this representation the application of network analysis extends the frontiers of the
study of knowledge interactions well beyond the possibilities of traditional inno-
vation surveys.

Behind the concept of ENQ there are three intuitions directly influenced by the
theory of innovation. The first intuition is that the level of knowledge in an agent’s
network is in a positive relationship with the agents’ productivity in new knowledge
generation. The second intuition is that the structure of collaboration among
partners in the agent’s network is the source of further growth of knowledge
available from the network. Following the third intuition we assume that partners
in the ego network not only increase the amount of knowledge accessible, but also
contribute to its diversity through building connections to different further groups
not linked directly to the ego network.

Therefore we structure ENQ around basically two dimensions, which are then
augmented with a related third aspect. The two dimensions are: Knowledge Poten-
tial and Local Connectivity. Knowledge Potential (KP) measures knowledge accu-
mulated in the direct neighbourhood and it is related to the number of partners and
the knowledge of individual partners. Local Connectivity' (LC) is associated with
the strength of ties and the intensity of interactions among partners. The third aspect
is called Global Embeddedness (GE) as it intends to capture the quality of distant
parts of the network (beyond immediate partners). However, this aspect is
implemented by applying the concepts of KP and LC for consecutive
neighbourhoods of indirect partners in the network.’

! Note that connectivity is used here in a broader sense than in graph theory. In graph theory
connectivity refers to the number of vertices the removal of which disconnects the graph. In our
case, this term refers to a similar concept but with a less strict definition. By connectivity we
simply mean the extent of ties connecting a given group of vertices.

2 Before moving forward, though, we have to make a terminological clarification. Generally the
term ‘neighbourhood’ of a node refers to the group of nodes connected directly to a specific node.
In our study by neighbourhood we mean not only the directly but also the indirectly connected
nodes. As this definition in itself would mean that the term neighbourhood refers to the totality of
nodes in the graph, we refine the definition and use the more specific term ‘neighbourhood at
distance d” which refers to the nodes exactly at distance d from a specific node.
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The notation in the proceeding formulation is as follows. As usual, we represent
the network under question by the adjacency matrix A = [a;], where the general
element a;; describes the connection between nodes i and j. Generally, the elements
of the matrix are considered as weights, normalized to the interval between 0 and
1. A special case of this formulation is thus the binary network, where the elements
of the adjacency matrix can be either zero or one. We have to note here, that only
undirected networks are dealt with in this chapter, i.e. the adjacency matrix is
assumed to be symmetric. The adjacency matrix defines the matrix of geodesic
distances (lengths of shortest paths) between all pairs of nodes, which we denote by
R = [r,:,»].3 In order to account for knowledge levels, we use k = [k;] as the vector
of knowledge at each specific node of the network.

Given the conceptual model presented above, we can formalize ENQ as follows:

ENQ' =Y " 'W.LCIKP) (5.1)

In this formula superscript i refers to the node for which ENQ is calculated and
subscript d stands for distances measured in the network (geodesic distance). M is
the size of the network, W, is a weighting factor used for discounting values at
different d distances from node i, whereas KP!, and LC!, are the respective
Knowledge Potential and Local Connectivity values evaluated for the
neighbourhood at distance d from node i.

As a consequence of the formulation in Eq. 5.1, we emphasize that the proposed
formula for ENQ is a distance-weighted sum of Local Connectivity-weighted
Knowledge Potentials evaluated for neighbourhoods at different distances in the
network. By directly differentiating between immediate and indirect partners in the
network, we can reformulate ENQ as follows:

. . . 1 . . . . .
ENQ' = W\LC{KP| + > | W,LCiKP} = LCIKP| + GE'  (5)

where W, = 1 is the (assumed) weighting factor for the immediate neighbourhood.
Everything beyond the immediate neighbourhood can be labelled as Global
Embeddedness (GE). In what follows, the two basic concepts, Knowledge Potential
and Local Connectivity are introduced in more detail.

3In this chapter we use a non-weighted algorithm for the calculation of geodesic distances, i.e. the
distance of two nodes is regarded as the number of ties connecting them, irrespective of the
weights associated with these ties.

*The weighting factor is defined to be unity for d = 1 and descending towards zero as d increases.
There is no unique best choice with regards the decay function. We present some illustrative
simulations related to the choice of the decay function later in this chapter.
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5.2.1 Knowledge Potential

The concept of KP relates to the amount of knowledge an agent’s partners possess.
Using the notation presented before, the concept of KP can be formulated in the
following way:

KP) = Zj;,»,,:d".f (5.3)

The Knowledge Potential, as perceived by node i, can thus be calculated for the
neighbourhoods at different d distances from node i, and for all these distances it is
the sum of knowledge possessed by nodes at these distances.

5.2.2 Local Connectivity

As mentioned before, Knowledge Potential defined by Eq. 5.3 is going to be
weighted by the Local Connectivity of direct and indirect neighbours. It is assumed
that not only the knowledge levels of partners are of positive value to the node
under question but also the cooperation between neighbours. More specifically we
assume that each crosscutting tie has a positive value, depending on the weight the
tie has. Local Connectivity is therefore the sum of the tie weights present in a given
neighbourhood, normalized by the size of this neighborhood. The concept can be
formulated as follows:

(5.4)

Zj:)‘,-j:dZI:r,/:daﬂ
2

: 1
[ .
LC‘] - Ncll Zj:r,:/:dleI:ri[:daﬂ +

where N/, is the number of nodes laying exactly at distance d from node i. The
expression in the parenthesis is made up of two parts. The first term counts the
(weighted) ties between nodes at distance d — 1 and d.’ This reflects the intensity at
which two adjacent neighbourhoods are linked together. The second term counts
the (weighted) number of ties among nodes at distance d.® As a result, Local
Connectivity captures the intensity with which the (possibly indirect) neighbours
at distance d are linked together and linked to other neighbourhoods.’

3 Distances are always measured from node i.

S Division by two is required because matrix A is symmetric, and thus we can avoid duplications in
the counting. This division is not required in the first term because the definition there counts only
links from distance d — 1 to distance d and not vice versa.

Tt is worth devoting a word to the inclusion of distance-crossing ties (the first term in the
expression). Our intuition behind the concept of Local Connectivity is that collaboration among
partners enhances knowledge sharing and this leads to a better environment for knowledge



76 T. Sebestyén and A. Varga

To better capture the specific meaning of the expression in Eq. 5.4 recall that we
employ LC as a weighting factor to KP. Assume for example that node i has N/
direct partners and the links connecting it to these partners are of strength 1 (a; = 1
for all j in the direct neighborhood). If these partners have no connections among
each other, then the second term in the parenthesis is zero, and the first term is N’i
(because all connections have weight 1). Thus, LC is unity, which reflects the
intuition that the knowledge levels of partners are fully absorbed. If the connections
linking node i to its partners were less strong (a; < 1 for all j in the direct
neighborhood) then LC would be lower than one, contributing to a lower weighting
factor. This reflects the fact that in this case partners’ knowledge is not fully
accessible. Assume now, that the partners establish some links among each other.
In this case the second term in the parenthesis starts to increase, and the weighting
factor (LC) increases too. This reflects our previous concept, namely that a higher
level of collaboration among partners contributes to the knowledge attainable from
a network.

In the case of indirect neighbourhoods, i.e. when d > 1, this normalization bears
a different meaning. Nodes at distance d must be connected with nodes at distance
d — 1 with at least as many links as many nodes there are at distance d, i.e. N',.
Therefore, if all these links connecting nodes at distance d — 1 and d are of unit
strength, the first term in the parenthesis of Eq. 5.4 will be at least unity. However, it
still holds that the weighting factor LC is unity in the special case if nodes at
distance d are linked to nodes at distance d — 1 through connections of unit
strength and with the minimum number of connections required. It is also still
valid that interconnections in the neighbourhood at distance d increase the
weighting factor and weaker connections between the different neighborhoods
decrease the weighting factor. The only difference is that in these cases there is
an extensive margin: the number of connections between the neighbourhoods can
also increase, and this increases the value of LC resulting in a higher weighting
factor.

To sum up, LC is a weighting factor, which describes how well-connected a
node is to its neighbours and how well these neighbours are connected to each
other. However, the weighting is done according to a reference point: the weight is
taken to be unity for the special case if links to the partners are of unit strength and
the network around the node in question is a tree, with only one link attaching each
node to the previous (in the sense of distance) neighbourhood and no cooperation
among partners.

creation. In the case of the direct neighborhood, the links connecting the node in question and its
neighbors are clearly relevant in the general case of weighted ties: the amount of knowledge learnt
from the immediate partners depends on the intensity of interactions with those partners. On the
other hand we argue that in our concept the question is how dense the tissue of the network around
the node is. We are going to attach less weight to this connectivity the farther away it is from the
node, but the main point is that better connectivity among nodes is of higher value, and this
connectivity is not necessarily restricted to connectivity among nodes at a specific distance.
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5.2.3 Summing Up: Ego Network Quality

We can define the quality of the neighbourhood at distance d (denoted by Q),
which is the Knowledge Potential of the nodes at distance d from node i weighted
by the Local Connectivity of the neighborhood at distance d. If we are looking only
at the direct neighbourhood of node i, we can write:

Qi = KP|LC} (5.5)

This expression reflects the knowledge level of direct neighbours, weighted by
the interaction among these neighbours.® However, as noted earlier, the level of
knowledge attained from direct neighbours is enhanced by the level of knowledge
these neighbours attain from their individual networks. Therefore, we augment our
quality measure with the same connectivity-weighted knowledge levels of further
indirect neighbourhoods, using the distance weights as introduced before.
According to this, the index of Ego Network Quality is defined as follows, which
comes back to our starting definition in Eq. 5.1:

ENQ' =" W0} = W.KPILC} (5.6)
5.3 Structural and Node Characteristics in ENQ

Consider the special case when distance weighting is applied in the ENQ formula
but differences in node characteristics (i.e., knowledge levels) are disregarded,
which is the assumption behind traditional network position measures. In this
section we show that in this special case ENQ measures network position in a
way very much similar to the intuition behind eigenvector centrality (Bonacich
1972, 2007).

For the sake of simplicity we normalize knowledge levels to unity, so we have

k; = 1 for all i, therefore KP) = Z

i Ji=N ;.9 Now we have the following
formula for ENQ:

(5.7)

E . E A
. M—1 jiri=d kirp=d "’
ENQ' = E W E E Aix = =

Q a=1 4 iry=d—1 L—kry=d Ik + )

The first term in the parenthesis counts the number of links connecting nodes at
distance d with nodes at distance d — 1, whereas the second term gives the number

8 Note, that the weight for d = 1 is unity by definition.

°It is easy to see that using (identical) knowledge levels different from unity would change the
results by a multiplicative constant compared to the situation with the normalized levels.
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of links between nodes at distance d. In Eq. 5.8 we add the expression
Z/,r;,»:lek,m:dJrlajk to those in the parenthesis, and multiply the second term

by 2. We will denote this new expression by DIST":

DIST' = (ZdM:_ll Wdzjil‘ﬁ:dflZkim:dajk + Zf,"iz:dzk,/';k:dJrlajk
+ j:r,-j:de:r,-k:dajk> (5 8)

This expression simply counts the weighted number of links between nodes at
distance d — 1 and d (first expression in the parenthesis), the weighted number of
links between nodes at distance d and d + 1 (second expression in the parentheses)
and as the result of the multiplication double-counts the links among nodes at
distance d (third expression in the parentheses). In other words, after this modifi-
cation the number in the parenthesis gives the (weighted) sum of links which nodes
at distance d have (double counting the links within the neighbourhood at distance
d as these links belong to two nodes in this neighbourhood), which is simply the
sum of (weighted) degrees of nodes at distance d. Using all this, we can write

P NMl Ml .
DIST" = Zd:l Wa (Zj;r,-,:deaﬂ‘> =2 a1 Wa j;r,-,:dDEG-’ (5.9)

where DEG; is the degree of node ;. This expansion, however, results in no
substantial change in the ENQ measure. The original measure counts every link
once, whereas the modified version counts every link twice. If the adjacency matrix
is symmetric, which we assume, this modification then means a simple multiplica-
tion by 2 on the level of the overall index. To sum up, the expression in Eq. 5.9 is the
distance-weighted sum of degrees in the network. On the other hand, the previous
reasoning clearly shows that this measure is twice the ENQ measure in this special
case with no knowledge weights at the nodes:

DIST' = 2ENQ' (5.10)

On the other hand, the expression in Eq. 5.9 has some similarity with eigenvector
centrality (Bonacich 1972, 2007), which also reflects a distance-weighted sum of
degrees in a network, although it uses a recursive definition with implicit exponen-
tial weights leading to an eigenvector problem.'® This means that our ENQ index,

10 Eigenvector centrality is defined by the following recursive concept. Let x; denote the centrality

of node i and let this centrality be determined by the cetralities of adjacent nodes: x; = 1/ /IZa,-jxj.
j
Written for all nodes we end up with the matrix equation x = 1/AAx, which is an eigenvector
problem. The eigenvector corresponding to the largest eigenvalue (which rules out x; s of opposite
signs) gives the required centrality measures. It is easy to see that this recursive definition
discounts the centrality value of distant nodes exponentially (given that 2 > 1). In addition, if
we consider the partners’ centrality indices identical, the centrality index of node i is proportional
to its degree, whereas relaxing the assumption of identical centrality measures in the direct



5 A Novel Comprehensive Index of Network Position and Node Characteristics 79

Sparse random network Dense random network
02 i’ d : : & : :
0.15 . Lt
0] 0] | " -l
o 0.1 o 0.1 .'{5‘
g
) 27
0.05 LT | B
0 . 0.05
60 80 100 120 750 800 850 900 950
ENQ ENQ
Sparse scalefree network Dense scalefree network
0.4 f 0.2
03 : 0.15} e
© = | o P
b 02 : b 1 o 0.1 "p‘
. d”
0.1 G ) ! 0.05}
L
0 0
150 200 250 300 350 1000 1200 1400 1600 1800
ENQ ENQ

Fig. 5.1 Correlations of ENQ (horizontal axes) and eigenvector centrality (vertical axes) in
different networks, under the assumption of unit knowledge weights for all nodes

when knowledge levels are homogenous, reflects similar properties to eigenvector
centrality, which is a comprehensive measure of network position taking into
account the whole structure around a given node from its immediate neighbourhood
to farther parts of the network.

Figure 5.1 illustrates this point on a random graph (based on the Erdds-Rényi
(1959) algorithm) and on a scale free graph (based on the preferential attachment
mechanism proposed by Barabasi and Albert (1999)), both of size 100. Both graphs
are represented for a sparse and a dense case.'" As it is clear from the figure, there is
a tight positive correlation between ENQ and eigenvector centrality.'”

neighborhood but retaining it in the consecutive ones, the index for node i turns out to be the sum
of degrees of direct partners, and so on. This is not to prove that the expression in Eq. 5.9 and
eigenvector centrality are the same, but the underlying concepts have common characteristics.

" The sparse network is simulated at 5 % density and the dense network at 30 % density. These
two values were picked as follows. Density 5 % is the threshold approximately at which random
networks of size 100 become connected, so that the whole network is likely to be connected at 5 %
density. The 30 % density value corresponds to the density of interregional co-patenting networks
as presented in Sebestyén and Varga (2013).

12 Note that these illustrations are created for the case when ENQ is calculated with linear distance
weights and homogenous knowledge levels across the nodes. Linear distance weights are chosen
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The correlation is stronger for the denser networks and for the scalefree structures
(with the dense scalefree case being almost deterministic).

The arguments and results presented above show that our measure captures the
position of the nodes in the network, which results from the structure of the network
around specific nodes, taking into account both the direct and indirect
neighbourhoods. However, the ENQ index is also capable of taking into account
node-specific characteristics, captured by knowledge potential in our context,
which is not part of the traditional measures of network position (especially of
eigenvector centrality analysed here).

5.4 ENQ with Different Weighting Methods: A Systematic
Comparative Analysis

ENQ involves three weighting dimensions. The first is weighting at the node level
and is captured by the knowledge of each connected node. That is, we do not
consider nodes as homogenous with respect to their inherent characteristics apart
from their position in the network, but take their heterogeneity implicitly into
account. The two other dimensions of weighting correspond to the structural
properties of the network. The second dimension is weighting by distance and the
third one is weighting by the local structure captured by the Local Connectivity
element in the ENQ measure. Though the first dimension (i.e., knowledge level) is
taken as exogenous the other two dimensions are tightly related to the structural
properties of the network around the specific nodes. In this section we study the
impacts of different approaches measuring these structural properties on ENQ.

5.4.1 Analytical Framework: The Modified Preferential
Attachment Model

The analyses to be presented are placed in the framework of a modified version of
the well-known preferential attachment model, originally proposed by Barabasi and
Albert (1999). The reason for using this framework is twofold. First, we can
simulate the behaviour of the ENQ index under different network structures and
second, it is possible to define those structures and the corresponding characteristics
of the ENQ index which seem to be relevant in the context of knowledge networks.

The model used offers the opportunity to build networks which range from the
random topology (according to the Erdds-Rényi algorithm) to centralized topolo-
gies (with a connected core and peripheral actors tied only to the core with sparse or

because in this case the weight of GE in the ENQ index is the highest (see later), thus the
differences in the GE element are captured the best in this case.
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no connection within the periphery). Between the two extremes the model
reproduces the properties of the preferential attachment model.'> The detailed
description of the model can be found in Sebestyén (2011), and a brief outline is
presented in the Appendix.

Figure 5.2 illustrates the change in the average clustering coefficient and the
average path length (distance) as we move from random to centralized graphs along
the modified preferential attachment model."* On the horizontal axis we move from
random to centralized structures, the meaning of the scale moving from O to 1 is
described in the Appendix. On the vertical axis, the two measures are normalized,
with the values corresponding to the random structure being unity. Average path
length measures the average distance of the nodes from each other in the network
and the average clustering coefficient captures that on average how well connected
the direct partners of the nodes are.’ As the figure shows, there is a monotonous
decrease in average path length and a monotonous increase in the average cluster-
ing coefficient.

The decrease in path lengths stems from the centralized nature of the networks
on the right wing of the figure: path lengths are the shortest possible in this
topology, and any departure from this, including the random structure, results in
an increase in the path lengths.'® However, the change in average distances is not so
marked due to the fact that random networks are already characterized by short
average path lengths, so there is relatively less room for a further decrease. The
considerable increase in the clustering coefficient comes from two facts. First, the
clustering coefficient in a random network is typically low as the randomness of ties

131t is important to highlight that the proposed model is not capable of capturing all characteristics
of the empirical knowledge networks one encounters in practice. For example, the networks
generated are characterized by one core group and multiple cores are not accounted for. Also,
hierarchical structures often found in real networks are not present in the simulated structures. The
goal, however, is not to provide a network model which generates topologies that precisely reflects
empirical ones, but to establish a relatively simple method to span a reasonably wide range of
network structures and to test the behaviour of the ENQ index under these structures. On the other
hand, the choice of the underlying network model seems reasonable as it comes up with topologies
reflecting those characteristics often found in reality. First, it accounts for preferential attachment
in its intermediate range (which is found to be a robust driving force behind real world networks)
and second, it also accounts for centralized structures with connected cores and marked periphery
which is a typical pattern in knowledge networks. Additionally, although less relevant from an
empirical point of view, but as an extreme case the random topology is accounted for.

' The network size is 100 and the density is 28 % in this specific illustration (corresponding to the
empirical network analyzed by Sebestyén and Varga (2013)) but further simulations show that the
tendency visible in the figure is robust across different network sizes and densities.

!5 Average path length is the average of the shortest paths measured between every pair of nodes in
the network. The clustering coefficient measures the density of the direct neighborhood of a node
and the average clustering coefficient is simply the mean of these local coefficients (see
Wasserman and Faust (1994) for details).

1 Take the star network as an extreme example. In this topology average path length is somewhat
smaller than two as the majority of the nodes are at distance two from all other nodes except from
the central one and the central node is at distance one from all other nodes.
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leaves no room for significant local densities. Second, in this specific model, for
more centralized structures we have a densely connected core and all other nodes
outside the core are connected to this group of nodes. The result is that the nodes in
the core have relatively low clustering as their neighbours outside the core are not
linked to each other, but the majority of the nodes outside the core have high
clustering as their neighbours in the core are densely connected to each other.
Average clustering rises because the high clustering of the many peripheral actors
in the centralized structures dominates the low clustering of the few central ones.

Using the modified preferential attachment algorithm as a framework for our
further analyses we can model different network structures along a well-defined
interval ranging from random networks to centralized topologies. The random
network on one extreme of the model can serve as a natural (and widely used)
reference point for examining network structures, whereas the model moves
towards more centralized topologies through scalefree structures which are empir-
ically more relevant. See for example Barabasi (2003) or Csermely (2006) for a
general discussion.

As an empirical reference for the modified preferential attachment algorithm, we
employ the patent-co-inventorship network of European NUTS?2 regions, reported
by Sebestyén and Varga (2013). This empirical network is situated approximately
between a value close to 0.0 and around 0.6 on the horizontal axis of Fig. 5.2."7

'7 The empirical network has an average path length of 1.78 whereas the corresponding random
network (with the same size and density) has a path length of 1.72 (not significantly different from
the empirical number). As a consequence, with regards to the path lengths, this empirical network
can be positioned on the left hand side of Fig. 5.2. The clustering coefficient of the empirical
network is 0.66, 2.35 times higher than the coefficient of 0.28 characterizing the corresponding
random network, thus from the clustering point of view, the empirical network is situated around
0.6 on the horizontal axis of Fig. 5.2. This shows that the network model can reflect empirically
relevant topologies throughout its interval from random to centralized structures.



5 A Novel Comprehensive Index of Network Position and Node Characteristics 83

5.4.2 Accounting for Distance-Weighting in Random and
Scalefree Structures

Although it is straightforward to state that the properties of the network located
farther away from a given node is of less importance for that specific node, the
question remains that exactly how much less this importance is. Technically speak-
ing, the decay function for the distance weights W(d) must be determined. In
general the choice of the decay function seems to be arbitrary. In this section we
present some analysis to reveal how the ENQ index behaves under different
weighting schemes and network structures. The aim is to provide a background
for empirical analyses by giving a conceptual description of the ENQ index when
using it for different network settings. The vehicle for analysing different structural
settings is the modified preferential attachment model, and for the decay function
we consider three basic and straightforward cases: the linear, the hyperbolic and the
exponential decay.

Using linear weights we assume that moving one step farther away in the
network, the absolute loss of information or knowledge is the same from neighbor-
hood to neighborhood. In linear weighting we use the following formula:

W®=%}? (5.11)

where M is the size of the network. This specification has the property that at
distance d = 1 its value is unity, whereas its value descends to zero when distance
would cross the boundaries of the network, namely at d = M. In other words, the
farthest possible node (at distance d = M — 1) has a small but positive weight. This
form of the linear decay has different decay speeds for different network sizes, but
rules out negative weights.

A hyperbolic decay can be defined simply as

(5.12)

It is easy to prove that it satisfies the requirement that at distance 1 its value is
unity. On the other hand, this option is independent of network size and gives
positive values for any distance. However, due to the hyperbolically decreasing
weights, in larger networks this method implies low values for Global
Embeddedness especially if dense and highly knowledgeable nodes lay at relatively
high distance from the node in question.

Exponential weighting is defined as

W(d) =e'™ (5.13)
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It has similar characteristics as the hyperbolic decay, but the pace is faster.
Exponential weighting corresponds to the situation when the information or knowl-
edge lost from consecutive neighbourhoods decreases by a constant percentage.

Figure 5.3 depicts the results of a simulation experiment where we built net-
works using the modified preferential attachment model proposed before, moving
in 21 steps from totally random networks to totally centralized ones. In all steps we
generated 100 networks and then calculated for each network the ENQ values with
linear, hyperbolic and exponential weights in the distance decay function. The lines
in the figure represent average ENQ values for a given network structure and for
different decay functions.'®

It is clear from the picture that the different weighting methods end up with
different ENQ values. The higher weights are given to more distant
neighbourhoods, the higher will be the Global Embeddedness value and therefore
the overall ENQ index. This is reflected by the figure: linear decay gives the highest
weights from d = 2 on and this decay function gives the highest ENQ values.
Hiperbolic decay lies in the middle, while exponential decay is the fastest leading to
the smallest ENQ values.

In addition to this tendency, we also observe that ENQ values typically increase
for higher centralization. This latter tendency can be easily explained by the
interplay of two effects related to the changing characteristics of the network
topology in the modified preferential attachment model. Decreasing average dis-
tances (see Fig. 5.2) lead to a higher ENQ ceteris paribus through the increase of the
GE element (as path lengths shorten, initially more distant neighbourhoods come
closer, thus the same KP and LC values are less discounted due to distance),
irrespective of the choice of the decay function in the distance weights. On the
other hand, the increasingly dense local neighbourhoods (reflected by the increasing
clustering coefficient in Fig. 5.2) lead to higher LC values, not only in the direct
neighbourhoods but also in more distant ones. These two effects reinforce each
other as we move towards centralized structures, leading to higher ENQ indices for
the centralized topologies.

It is also clear from the figure that the differences between the ENQ values
calculated according to the different decay functions remain constant throughout
the interval from random to centralized networks. This is explained by the fact that,
as evidenced by Fig. 5.2, the increase in clustering (which is reflected by the LC
element of ENQ) dominates the decrease in average distances. Therefore the choice
of the distance decay function, is less relevant in the case of those network
structures which are accounted for in the preferential attachment model. On the
other hand, this constant difference means that the choice of the decay function has

'® The figure illustrates the results of a simulation with networks of size 100 and density 30 %. For
all structures 100 independent runs were executed and then averaged. The results shown are robust
for networks with different sizes and densities.
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only a shift effect on the ENQ in this specific interval between random and
centralized structures.

These results with different distance weighting schemes and network structures
indicate that the ENQ index is able to capture relevant structural differences,
whereas (apart from the trivial shift effect), the choice of the decay function does
not result in any bias when applying the index to different structural settings,
meaning that it does not overestimate or underestimate ENQ under any weighting
schemes compared to other topologies or weightings.'”

5.4.3 Accounting for Structural Holes: Modifying
the Structural Weights

As highlighted before, besides the weights attributed to indirect neighbourhoods at
different distances, the other important weighting in the model is represented by the
Local Connectivity value which weights the sum of knowledge levels at a given
neighbourhood with the connectedness of that neighbourhood: the more connected
the neighbourhood, the higher the weight. This kind of formulation seems intuitive
and it relates to the notion of social capital as defined by Coleman (1986) who
emphasized the role of cohesion, i.e. closed local structures as enhancing individual
action. The more connected an individual’s neighbourhood is, the more social
capital he or she has and the better for him or her. On the other hand, Burt (1992)
challenged this view emphasizing the role of structural holes in individual perfor-
mance and as a source of social capital. Structural holes are present in a network

!9 Given a specific structural setting along the horizontal axis of Fig. 5.3 between random and
centralized topologies, moving one step in either direction resulting in a different structural setting
leads to the same absolute change in the ENQ index irrespective of the choice of the decay
function.
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where the Coleman-type cohesion is missing. In other words, nodes in structural
holes fulfil the role of a gatekeeper or information broker among different groups.
In this view, a node’s position in the network is efficient, if its neighbourhood is not
fully connected but consists of more, otherwise unconnected groups.

Although the concept of structural holes is intuitively appealing, its measure-
ment leaves open questions. Once the analysis tries to capture the number of
unconnected cliques in a neighbourhood, one immediately finds the problem of
determining the threshold in connectivity from which a group of nodes are consid-
ered as a clique (and vice versa, the threshold from which groups are referred as
distinct). There are several methods established in social network analysis from
positional analysis to blockmodeling (see for example Wasserman and Faust 1994)
which offer solutions to this question but all retain the crucial cornerstone of
determining the threshold exogenously.

Linked to the previous problem, if one looks behind these concepts, it becomes
clear that structural holes and cohesion (connectivity) are not independent structural
characteristics. If the neighbourhood of a node is densely connected (cohesive), the
chance for finding many unconnected groups in this neighbourhood is small.
Conversely, if there are unconnected groups, the density must be lower.”” As a
result, we cannot construct independent metrics for the two concepts.

Taken all this together, the ENQ index developed in this paper provides a
flexible framework to include these concepts. Although our definition of Local
Connectivity in Eq. 5.4 reflects the cohesion approach a la Coleman and disregards
the importance of structural holes, in a general sense we may define Local Structure
as a weighting factor for Knowledge Potentials of the specific neighbourhoods and
let this LS term account for different approaches depending on the actual investi-
gation. In other words, Local Structure is a weighting factor capturing structural
features of neighbourhoods, but these structural characteristics can be defined in
different ways. Previously we defined and used Local Connectivity as a possible
way to specify the Local Structure weight. In what follows, we implement an
additional weighting for Local Structure in order to capture not only cohesion but
also structural holes or the combination of these features.

Taken into account the previously mentioned problems of measuring structural
holes, we propose a simple approach which captures the basic intuition behind the
concept and provides an easy way to link this measurement to cohesion. We use a
strict threshold for defining cliques in a neighbourhood, namely the number of
connected components in the subgraph defined by the nodes in a given
neighbourhood. This approach, although the threshold also comes from an exoge-
nous souzrce, can be labelled as a baseline solution to identifying cliques in the
network.”!

20See Fig. 5.5 and the explanation in the Appendix.

2!t is known from graph theory that the number of connected components in a graph is given by
the multiplicity of the zero eigenvalues of the Laplacian matrix of the graph. The Laplacian matrix
is simply the difference of the diagonal degree matrix (with node degrees on the diagonal) and the
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If we define CC', as the number of Connected Components (or in other words the
number of unconnected groups) in the neighbourhood at distance d from node i, the
ENQ index can then be reformulated with structural holes being the weighting
factor of Knowledge Potential in addition to the distance weights:

ENQ' =) WaQj =) WKP)CC; (5.14)

This formulation though, puts the index to the other extreme, taking into account
only structural holes and disregarding cohesion. On the other hand, it is also true
that both Local Connectivity and Connected Components take a very strict view
and measurement of the phenomena they intend to capture. Local Connectivity
captures simply the intensity of cooperation by counting the links in different
neighbourhoods, while Connected Components restricts the counting only to totally
unconnected groups. However, by combining the two approaches, ENQ can reflect
a more refined picture about the structure of local neighbourhoods. Let’s redefine
ENQ with the product of Local Connectivity and Connected Components as the
weighting factor of Knowledge Potentials (the Local Structure component, defined
before):

ENQ' =" WaQj = WiKP,CCILC) (5.15)

This formulation refines the two extreme cases by positively weighting diverse
groups and at the same time the strength of connectivity. In addition to the fact that
the empirical literature is not conclusive on the relevance of the two approaches,” it
is intuitively reasonable to think that an optimal network position combines these
two structural features: too much cohesion is not good as the advantage of access to
diverse information and knowledge is lost but the lack of cohesion can also be
disadvantageous as the connections in the neighbourhood can contribute to learning
and knowledge creation through fast knowledge transfers, collective learning and
recombination of ideas. The trade-off between the two concepts (referred to before
and detailed in the Appendix) provides a natural way to combine the two effects as

adjacency matrix of a graph. (see e.g. Godsil and Royle 2001). Taking then the node-generated
subgraphs spanned by the nodes at specific distances from the node in question and using the
Laplacian method, we can easily calculate the number of connected components, although closed
formula cannot be given.

2 Although many of the results in this field show that a position in structural holes contribute to
better performance in a diversity of fields (e.g. Hopp et al. (2010), Kretschmer (2004), Donckels
and Lambrecht (1997), Zaheer and Bell (2005), Powell et al. (1999), Tsai (2001), Burt
et al. (2000), Burton et al. (2010)), there is still evidence on the opposite (Salmenkaita 2004;
Cross and Cummings 2004). Rumsey-Wairepo (2006) argues that the two structural settings are
complementary to each other rather than substitutes in explaining performance. In general, it
seems that different structural dimensions can be important for different networks. When infor-
mation flows and power is important, structural holes indeed provide better position, however, as
in our case, if knowledge production is in the focus, exclusion resulting from structural holes may
be harmful and cohesiveness meaning better interaction may have positive contribution.
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the multiplication of Connected Components and Local Connectivity in Eq. 5.15
attach higher weights to structures which lay in between neighbourhoods with
extreme structural holes and extreme connectivity.

In order to evaluate the modification of the structural weights in the ENQ index,
we executed similar simulations with the modified preferential attachment model in
the background as for the distance weights. With these simulations we can gain
insight into the behaviour of the ENQ index under different structural settings and
weighting schemes for local neighbourhood structures. The results are summarized
in Fig. 5.4. The simulations were executed for sparse and dense networks of size
500, and in all cases hyperbolic distance weighting was used.”® The figure uses a
logarithmic scale on the vertical axis in order to keep the tendencies visible.

The results on the figure show that the cases for dense and sparse networks are
qualitatively the same, but the observed tendencies are sharper for the dense one.
The solid lines show the same path for ENQ as that for the hyperbolic distance
weights in Fig. 5.3. These values are obtained if we consider Local Connectivity
(or putting differently the density of neighborhoods or cohesion) as a weighting
factor for Knowledge Potential. The dashed lines in comparison are obtained for the
case when connected components (structural holes) are used as a weighting factor,
whereas the dotted lines show the mixed case.

The overall picture shows that the cases when only CC is used as structural
weight are significantly lower — this is explained by the fact that CC weights tend to
be lower as they count connected groups whereas LC counts links in the networks.
Even a small departure from the star topology (where neighbourhoods are disjoint),
leads to a sharp decrease in the number of connected components in the neighbor-
hoods. This rule is responsible for the sharp increase in the ENQ values when it
includes CC (structural holes and mixed cases in the figure) for the extremely
centralized topologies. The second observation is that the mixed and the pure
connectivity-weighted case results in similar ENQ values for a large interval of
the underlying network structures. This is due to the fact that for this interval the
number of unconnected groups tends to be small, thus the additional weighting by
CC in the mixed case rarely leads to significant departures from the simple
LC-weighted values (this similarity is not present for the highly centralized struc-
tures for the reason mentioned before). Additionally, in the dense network, the pure
connectivity-weighted and the mixed case result in identical ENQ values as the
high density leaves no room for unconnected groups, whereas in the sparse network
unconnected groups are more likely to be present.

Note, however, that these results and tendencies mark overall, aggregate features
of the ENQ index. Its local, node-specific characteristics are not taken explicitly
into account, but it is still true that even if on the aggregate level there is no marked

2 Further simulations showed that the results are robust for altering the size of the network (the
tendencies are better illustrated by larger networks — this is why we used size 500, but are
qualitatively the same for smaller networks). Sparse networks mean 5 % density while dense
networks 30 % density as before, and for each structure 100 independent simulations were
executed and the results averaged.
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Fig. 5.4 ENQ values under different structural weighting methods

difference between the weighting methods, the local neighbourhoods can differ and
node-specific ENQ indices can reflect these differences.

To sum up, we can see that there is no significant difference between the original
(connectivity) weighting method and the augmented one (where both connectivity
and structural holes are taken into account) in the networks characterized by the
modified preferential attachment model, except for extremely centralized (star-like)
topologies. On the other hand, whether structural holes or cohesion, or their
combination provide an efficient network position in a general sense is still an
open question and requires an empirical assessment. Our ENQ measure can accom-
modate both cases, and is flexible to account for different structural weighting
methods. As a result, it can be used to test empirically the effect of structural
settings on the efficiency of network positions.

5.5 Robustness of Different Weighting Schemes in ENQ:
An Empirical Investigation with European
Co-patenting Networks

Though simulations can gain insights into some important properties regarding
cohesion, structural holes and distance in ENQ, the relative importance of the two
structural settings and distance weighting schemes remains an open issue for
empirical studies. In general, different environments and goals might favour dif-
ferent structural and distance decay settings. In this section a short empirical
investigation is carried out in this respect. We use the ENQ index of co-patenting
networks to explain R&D productivity in European regions and investigate if there
is a variation in the extent to which different weighting methods affect regression
results.

The analysis is based on the knowledge production function initially specified by
Romer (1990) and parameterized by Jones (1995). In the interpretation of the
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parameters we follow Varga (2006). In this specification technological change is
associated with contemporary R&D efforts and previously accumulated knowl-
edge. We assume that the efficiency of R&D efforts is positively related to the
quality of interregional knowledge networks measured by ENQ. We are interested
in the explanatory power of the model specified with different structural weighting
methods in the ENQ index.

In the empirical specification we follow Varga (2000) and Varga et al. (2013)
and set out the knowledge output in region i (denoted by K;) in function of R&D
expenditures in that region (RD,), national knowledge stocks (KSy) and local
agglomeration (AG)):

10g(K,‘) =y + allog(RD,«) + aglog(KSN) + a310g(AGi) + & (516)

Then, we relate research productivity, measured by ; ; in region i (the parameter
of the R&D variable in Eq. 5.16) to the quality of the interregional knowledge
network:

ay,i = Py + BLENQ,; (5.17)

Substituting Eq. 5.17 into Eq. 5.16 results in the following equation to be
estimated:

log(K;) = ao + Polog(RD;) + f,1og(RD;)ENQ; + azlog(KSy)
+ a3log(AG;) + & (5.18)

The analysis is based on a sample of 189 European regions (a mix of NUTS2 and
NUTSI1 regions) for which information was complete enough for our purposes. The
network under question is a network of these regions and the links are patent
co-inventorships between 1998 and 2002. By definition, the network is a weighted
network with the number of patents co-invented by inventors from two regions
being the weights of a link. The network was built using data from the REGPAT
database of OECD (2009). From this network we calculated ENQ indices with
different structural weighting methods with patent stocks playing the role of
knowledge levels (k;) in the calculation of ENQ. The knowledge output on the
left hand side is proxied by new patents generated in 2002 (the end of the
aggregation period for the knowledge network). Research effort is measured by
annual R&D expenditures by the regions in 2000 (the time lag is included in order
to account for timely effects of research efforts on innovative output). Agglomer-
ation is measured by the size-adjusted location quotient of technology- and
knowledge-intensive sectors. The source of the latter data is the Eurostat New
Cronos database.”

24 See Varga et al. (2013) and Sebestyén and Varga (2013) for further details on data and
methodology.
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Table 5.1 Main regression
results with different distance
and structural weighting

Structural weights
Cohesion Mixed

schemes Distance weights Linear 0.2737" 0.0755
(0.7534) (0.7482)
Hyperbolic 0.2570"" 0.3366"""
(0.7599) (0.7571)
Exponential 0.2418"™" 0.3687"""
(0.7609) (0.7607)

Npte: Asterisks refer to significance levels (*10 %; "5 %;
1 %). R-squared values of the corresponding regressions are
in parentheses

Detailed estimation results of Eq. 5.18 under different structural and distance
weighting methods can be found in Table 5.2 in the Appendix. Table 5.1 below
presents the coefficients of the ENQ indices, i.e. the estimated contributions of
network position to R&D efficiency (f; in Eq. 5.18) and regression fits
(in parentheses). With the exception of linear distance weights regression results
appear to be robust to the choice of distance and structural weights. Though
estimated parameter values in the mixed case are somewhat higher compared to
cohesion weighting, this difference does not show up in the respective equations’
explanatory powers.

To sum up, as already signalled by the simulation analyses with regards the
distance and structural weighting schemes, empirical findings reinforce that the
ENQ index is able to robustly capture the position of a node in the network and the
specific choice of distance and local neighbourhoods structure weighting are of
secondary importance.

5.6 Summary

In this paper we introduced the Ego Network Quality (ENQ) index, which intends
to capture the value of knowledge available from a node’s immediate and indirect
neighbourhood in a given network. The index integrates three aspects of the
network position into one comprehensive measure. First, it is based around the
concept of Knowledge Potential which sums the value of knowledge available at
the neighbours. Second, this Knowledge Potential is weighted by the structure of
the neighbourhood on the basis of the assumption that in addition to the individual
knowledge level of partners, the structure of how they are related to each other also
contributes to the value of knowledge available from one’s network. Third, not only
direct neighbourhoods are taken into account, but also indirect partners with their
knowledge levels and structural characteristics.

Research on the impact of networks on knowledge production either concen-
trates on the characteristics of networks (“a-spatial studies”) or on the characteris-
tics of connected nodes (i.e., knowledge level in “spatial studies”) but neither on
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both features. It is shown in this chapter that ENQ is an integrated measure of
network position and node characteristics.

ENQ splits the network around a given node into consecutive neighbourhoods
depending on the distance of other nodes from the node in question, then it weights
the knowledge levels (Knowledge Potential) in each neighbourhood with the
structure and the distance of the neighbourhood. This chapter focuses on the
specific way these weightings are executed. In the case of distance, three possible
decay functions (linear, hyperbolic and exponential) were analysed while following
the literature on network position and social capital we proposed two distinct ways
for structural weighting, namely one which attaches high weights for dense local
structures (Local Connectivity) and one which weights structural holes (Connected
Components). Led by intuition, we also proposed a weighting scheme combining
these features.

Using simulation exercises we demonstrated that the ENQ is able to reflect the
structural patterns of networks, without leading to significant bias resulting from the
choice of the different weighting methods, especially on a specific interval of
network structure which can be remarked as empirically relevant based on some
stylized facts of empirical co-patenting networks. It is also demonstrated that the
ENQ index can flexibly accommodate different definitions of structural weights,
but under the same relevant structural interval of network topologies, this choice is
of secondary importance. Empirical findings further reinforce that ENQ is able to
robustly capture the position of a node in the network and the specific choice of
distance and local neighbourhoods structure weighting are of secondary
importance.

However, we must be aware of the limitations of the ENQ index and of this
study. First, although we employed a network model which spans a range of
different network structures, the analysis is still limited to the structures included
in this model, namely from random to centralized topologies. As mentioned before,
empirical networks can exhibit more refined characteristics than reproduced by
simple models — for example hierarchy, multiple cores, etc. Second, our analysis is
restricted to the global behaviour of the ENQ index under different structures and
weighting schemes. How the node level characteristics behave under these settings
was not tackled in the present paper.

We believe that the proposed measure of the ENQ index, although developed
and applied for a specific type of network, namely interregional knowledge net-
works, is able to bear general acceptance across different fields through its flexi-
bility. The general innovation is that not only the structural characteristics are
captured at the local and global levels through accounting for direct and indirect
neighbourhoods, but ENQ also accommodates and accounts for individual charac-
teristics of the nodes in these neighbourhoods. Although in this study we labelled
these characteristics as knowledge levels (Knowledge Potential), in a general sense
any node-specific feature can be substituted here. In addition, the weighting factor
for the structural features is also flexible to accommodate any structural property
the researcher wishes to emphasize.
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Appendix
The Modified Preferential Attachment Model

The model is developed in order to provide a transition from random graphs of the
Erd6s-Rényi type through scale-free structures to highly centralized networks. The
model starts from a network of M nodes connected randomly with average degree
D. Then we increase the size of the network step by step from M to N, adding one
new node to the network at a time. In each step the new node establishes exactly
D links with the existing ones, on the basis of a probabilistic parameter, r. With
probability r the new link is attached to the node with the highest degree in the
network and with probability 1 — r the new link is attached randomly to any
existing node. It is easy to see that using this method we have two parameters,
namely M and r, which contribute to the scalefree characteristics of the underlying
network. If r increases with a given M, the network moves towards a more
centralized structure and vice versa. However, if r is zero, we still do not have a
random network for an arbitrary M as the growth of the network in the algorithm
still contributes to an underlying asymmetric degree distribution (older nodes tend
to have more links than younger ones).

On the other hand, modifying M and r jointly, we can set up a one-dimensional
interval from O to 1 which moves from random graphs to centralized graphs through
scalefree networks. At one end of this scale we have M = N and r = 0, which is a
random graph by definition. Then we gradually increase » and at the same time
decrease M. As a result, the network structure resulting from the previously
described algorithm departs from being random and becomes more centralized.
At the other end of the scale we reach the most centralized structure with » = 1 and
M = 1. Note however, two things. First, we can express this process with one
parameter, say z, ranging from O to 1. Then we have r = zand M =z + (1 — )N
as inputs to our model and the value of z expresses the position between random and
centralized graphs. Second, the extreme case of z = 1 is not necessarily the star
network as if the degree is higher than one, there is a connected core in the network,
but it is true that the size of this core is D and all other nodes are linked only to
this core.

The model thus has analogous logic to the Watts-Strogatz model (Watts and
Strogatz 1998), with random and star-like topologies on the extremes and scalefree
structures in between.
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Fig. 5.5 Trade-off between structural holes and density in random and scalefree networks

Trade-Off Between Density and Connected Components

We executed a simple simulation on a random network and on a scalefree one (with
the Erd6s-Rényi and the Barabasi algorithms respectively). The networks in these
simulations are sparse networks with global density of 3 %. The sparsity is required
from a presentational point of view as the higher the overall density, the more
neighborhoods are connected and there is less possibility to find unconnected
groups in the neighborhoods.

For both networks we calculated the density and the number of connected
components in the direct neighbourhoods of every node (taking these
neighbourhoods as subgraphs and calculating density and the connected compo-
nents on these subgraphs). Figure 5.5 plots the calculated density values and
connected components for each node. As connected components must be an
integer, the data points are arranged in horizontal lines. The figure clearly shows
that there is indeed a trade-off between the two values and this trade-off is stronger
in the random network. In the scalefree case we rather observe a missing upper
triangle in the diagram, which shows that there are no nodes with dense
neighbourhoods and many unconnected groups in their neighbourhood, whereas
the other three combinations are present. In addition to dense neighbourhoods with
few groups and sparse neighbourhoods with many groups, there are nodes the
neighbourhoods of which are sparse and characterized by a small number of
unconnected groups, which are not present in the random network. The difference
between the two network structures stems from the different degree distributions.
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Chapter 6
Network Autocorrelation and Spatial
Filtering

Yongwan Chun

Abstract Geographical flows have been frequently modeled with gravity type
spatial interaction models. The estimation of spatial interaction models is often
achieved with regression techniques, including linear regression and Poisson/neg-
ative binomial regression based on the nature of the observations under the inde-
pendence assumption among observations. Recent studies show, with a
development of neighborhood structure among network flows, that geographical
flows such as population migration tend to have a significant level of correlation.
This phenomenon, called network autocorrelation, leads to a violation of the
independence assumption and raises a necessity of a proper modeling method which
can account for network autocorrelation. The eigenvector spatial filtering method
furnishes a way to incorporate network autocorrelation in linear regression and
generalized linear regression. Specifically, the eigenvector spatial filtering method
can be utilized to describe positive autocorrelation in Poisson/negative binomial
regression, whereas their counterpart auto models are able to describe only negative
autocorrelation due to the integrability condition. This chapter discusses different
specifications of eigenvector spatial filtering to model network autocorrelation in a
spatial interaction modeling framework. These methods are illustrated with applica-
tions with interregional commodity flows and interstate migration flows in the U.S.

6.1 Introduction

Interest in the geography of R&D networks has substantially increased over the last
two decades, and leads to theoretical and methodological advances in the literature
(see Chap. 1 of this volume). Spatial interaction models, which are often used in
modeling cross-region R&D collaboration activities, have been improved along
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with these methodological advances. Since R&D networks can be considered as
geographical flows, spatial interaction models can furnish an analytic method for
the geography of R&D networks (see Barber and Scherngell 2013). Recent devel-
oped methods show that such geographical flow models can be remarkably
improved by taking network autocorrelation into account in their model
specifications.

Geographic flows can be referred to as movement of people, goods, or services
on the earth surface. Statistical modeling for geographic flows has been commonly
conducted in a spatial interaction modeling framework. In a gravity type spatial
interaction model, the amounts of geographical flows are explained with three
different types of variables, which tend to capture the characteristics of origins,
destinations, and impedance between a dyad of an origin and a destination, respec-
tively. Linear regression is frequently utilized in model estimation (e.g., Celik and
Guldmann 2007; Greenwood 1985), and Poisson regression is also commonly
applied to count type flow data such as population migration (Flowerdew and
Aitkin 1982).

Spatial interaction models are further improved by taking the effects of spatial
structure into consideration. Curry (1972), Griffith and Jones (1980), and
Fotheringham (1981) discuss that parameter estimates of spatial interaction models
may be unreliable or biased when the effects of spatial structure are not incorpo-
rated. Specifically, an estimate of global distance decay is likely to be biased due to
its model misspecification in which localized spatial structure effects cannot be
distinguished from the global distance decay effect. For example, when multiple
destinations are closely located with each other, competition among the destina-
tions may occur and accordingly each of them may have less inflow than ones
without competition. That is, localized spatial arrangement affects decisions on a
geographic space. One methodological improvement is achieved by introducing a
variable capturing spatial structure effects in its model specification, which often
has a form of accessibility measure (e.g., Kwan 1998) This approach includes
competing destination models (Fotheringham 1983) and intervening opportunity
models (Stouffer 1960), which capture spatial structure effects among origins and
destinations, respectively. Studies show that spatial interaction models can further
be improved by introducing these two effects simultaneously (e.g., Chun
et al. 2012).

Recent research has developed model specifications to explicitly incorporate
dependence structure among observations in spatial interaction models (Chun
2008). These model specifications include stochastic terms that are applicable to
capture a dependence structure embedded in geographic flows. The dependence
structure among flows is referred to as network autocorrelation (Black 1992).
Studies (e.g., Chun 2008; Griffith 2009; Fischer and LeSage 2010; LeSage and
Pace 2008) show that incorporation of network autocorrelation remarkably
improves spatial interaction models. While these extended spatial interaction
models can be specified in the spatial autoregressive model framework (Chun
et al. 2012; LeSage and Pace 2008), the eigenvector spatial filtering method
furnishes a flexible way to account for network autocorrelation in linear and
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Poisson regression model specifications (Chun 2008; Griffith and Chun 2013;
Fischer and Griffith 2008; Patuelli et al. 2011).

This chapter discusses how spatial interaction models can be improved by
accounting for network autocorrelation. Specifically, it shows how eigenvector
spatial filtering can be extended to accommodate network autocorrelation. The
rest of this chapter is organized as follows. Section 6.2 presents how network
neighborhood structure can be specified. Section 6.3 describes the eigenvector
spatial filtering method to incorporate network autocorrelation in spatial interaction
models. Section 6.4 illustrates the proposed method with two empirical data
analyses. The final section presents conclusions and discussion.

6.2 Network Dependence Structure

Network autocorrelation can be defined as correlation among values in one variable
which is attached to network flows. In an example of interregional migration flows,
a network link is defined as a direct connection between an origin and a destination
(which are considered as nodes), and the number of migrants from the origin and to
the destination can be an attached variable. Investigations concern how observa-
tions attached to network flows are associated in a given network structure (i.e.,
similar or dissimilar tendency). This requires an operational framework to define
network neighbors as spatial neighbors are used for a spatial autocorrelation
measure such as Moran’s /. That is, Moran’s / can be utilized to measure network
autocorrelation with a defined network neighbor structure. This can be imple-
mented with a matrix, which is called network weights matrix here. Each element
of a network weights matrix contains a non-zero value for network neighbors and
zero otherwise. Generally, a network weights matrix has a larger dimension than a
spatial weights matrix. For example, while a spatial weights matrix has n-by-n
dimension for n regions in a study area, a network weights matrix can have n*-by-n”
dimension for n* flows among the n regions.

It is important to determine a structure in which the values of network flows are
considered to be associated with each other. Chun and Griffith (2011) show that a
network weights matrix can be generated from a spatial weights matrix as follows:

BY=1X)B (6.1)
BY=B)I (6.2)
BX=B@EHB=BXRI+IXB (6.3)
B =B)B (6.4)

where BN is an n’-by-n® binary network weights matrix, B is an n-by-n binary
spatial weight matrix (e.g., 1 when spatial units share a boundary; otherwise 0), I is
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an identify matrix with n-by-n dimension, () denotes Kronecker product, and €9
denotes Kronecker sum. An extended network weight matrix can be generated with
matrix addition between Eqgs. 6.3 and 6.4 as:

BN =BPB+B)B. (6.5)

In Eq. 6.1, network flows whose origins are same and whose destinations are
spatially neighbors are considered as network neighbors to each other. In Eq. 6.2,
network flows with same destinations and spatially neighbored origins are consid-
ered as network neighbors. These two network weights matrices reflect the effects
of spatial structure around destinations and origins, respectively. Chun (2008)
discusses competing destination models and intervening opportunity models as
the rationales for these two types of network weights matrix in the context of
population migration. The third type network weight matrix can be constructed
with the sum of the two network weights matrices in Egs. 6.1 and 6.2, reflecting the
spatial structure effects around both destinations and origins. In the network weight
matrix in Eq. 6.4, a network flow is associated to other network flows from its
origin’s spatial neighbors to its destination’s spatial neighbors.

The last type of network weights matrix in Eq. 6.5 can be generated by adding
the network weights matrices in Eqgs. 6.3 and 6.4. In this network weights matrix,
network flow is associated to all network flows that possibly occur between
spatially neighboring origins and spatially neighboring destinations including its
origin and destination. Figure 6.1 illustrates network dependence structures with
Egs. 6.3 and 6.4. The solid line network flow is associated to the 12 dotted line
network flows in Fig. 6.1a and 36 dotted line network flows in Fig. 6.1b. In a
network weight matrix with Eq. 6.5, these 48 network flows are considered to be
associated with the solid line (Fig. 6.1a, b). A network weights matrix based on
Egs. 6.3 or 6.4 has been frequently used in studies (e.g., Chun 2008; Griffith 2009;
Fischer and Griffith 2008; Mitze 2012). However, a network weights matrix based
on Eq. 6.5 has not yet been used. This weights matrix, in which all network flows
between spatially neighboring origins and destinations are considered, may allow
one to reflect a comprehensive network dependence structure.

6.3 Spatial Filtering in Spatial Interaction Models

Spatial interaction models have been one of most commonly used methods to
model interregional flows. A simple gravity type spatial interaction model can be
expressed as:

Fy=k-PP PP exp(By-dy)., ij=1.....n (6.6)

where Fj; is flow from i to j, P; and P; are population at i and j, respectively, and d;; is
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Fig. 6.1 Network dependence structures: (a) network flows from spatial neighbors of an origin to
a same destination or network flows from a same origin to spatial neighbors of a destination, and
(b) network flows from spatiallly neighboring origins to spatially neighboring destinations

the distance between i and j. The parameters (k,fo.pp,Bq) are often estimated with
linear regression after taking natural logarithm on both sides of the equation, or
generalized linear regression (e.g., Poisson regression). An augmented spatial
interaction model contains additional independent variables which reflect the char-
acteristics of origins, destination, and/or flows. In linear regression an augmented
spatial interaction model with a log-linear specification can be rewritten in matrix
form as:

In(F) =In(X)p + &, (6.7)

where X is a design matrix and & is the vector of residuals. Spatial interaction
models can be extended to accommodate network autocorrelation. The residuals, &,
often have a significant level of network autocorrelation in an empirical network
flow dataset. While spatial autoregressive (SAR) model approach provides a way to
incorporate network autocorrelation in its specification (e.g., Chun et al. 2012;
Fischer and LeSage 2010), eigenvector spatial filtering technique furnishes an
alternative method. The eigenvector spatial filtering (ESF) utilizes eigenvectors
extracted from a transformed spatial weight matrix, (I — 117/n)BI — 11"/n)
where I is an identity matrix with n-by-n dimension, 1 is an n-by-1 vector of
ones, and B is a spatial weights matrix. The eigenvectors are uncorrelated and
orthogonal. Hence, the eigenvectors represent distinct map patterns when they
are portrayed on the tessellation from which a spatial weight matrix is generated
(see Griffith 2003 for details). In regression the ESF method includes a set of
eigenvectors as independent variables to capture unexplained spatial autocorrelation
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which violates the independence assumption. Therefore, an ESF model does not
suffer from spatial autocorrelation that often leads to biased parameter estimates in
regression. In order to account for network autocorrelation in a spatial interaction
model, eigenvectors can be generated from MB"M where M = (I» — 1,21}, /n?),
I, is an identity matrix n>-by-n” dimension, and 1, is an n*-by-1 vector of ones. That
is, M is a modified matrix to match the dimension of BY. Hence, these eigenvectors,
E = (E.E,, - - - E,), in descending order of their corresponding eigenvalues denoted
as A = (Ap,Ap, - - -,Ay), can be utilized to capture network autocorrelation among
network flows. An ESF model specification of a spatial interaction model can be
expressed as:

In(F) = In(X)p + ExB, + &, (6.8)

where Ey denotes k selected eigenvectors, fy are corresponding coefficients, and €
is random errors. Since Ey capture network autocorrelation, the residuals do not
have a significant level of network autocorrelation and, hence, the parameter
estimates become unbiased (Griffith and Chun 2013). An identification of a feasible
set of eigenvectors can be conducted with the conventional stepwise regression
technique from a candidate set of eigenvectors. Generally, a candidate set of
eigenvectors is constructed by dropping eigenvectors which do not account for a
substantial level of network autocorrelation. Alternatively, eigenvectors can be
selected with minimizing network autocorrelation until network autocorrelation
in residuals are close to its expected value or its z-score is close to zero (Tiefelsdorf
and Griffith 2007).

6.4 Applications

In this section, two empirical interregional flow datasets are analyzed in a spatial
interaction model framework. In the first application, interregional commodity
flows in the U.S. (measured in million dollars) are analyzed in linear regression
framework. In the second application, interstate migration flows in the U.S. are
modeled with Poisson and negative binomial regression.

6.4.1 Interregional Commodity Flows in the U.S.

A dataset for interregional commodity flows in the U.S. were obtained from the
2002 Freight Analysis Framework (FAF)' which provides estimates of inter-
regional freight movements in the U.S. by integrating mainly Commodity Flow

! http://www.ops.fhwa.dot.gov/freight/freight_analysis/faf/
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Fig. 6.2 The dominant interregional commodity flows among the 111 FAF zones in the U.S.

Survey and other resources. In this research, origin—destination (OD) flows among
111 FAF regions which reside in the conterminous U.S. are analyzed. Hence, the
total number of flows is 12,321. Figure 6.2 displays dominant interregional com-
modity flows that are more than five billion dollars with line symbols. The point
symbols in the figure represent internal commodity flows within individual FAF
zones. The points are located at population weighted centers calculated with county
level population from the 2000 U.S. Census.

Following the classical spatial equilibrium model (Enke 1951; Samuelson 1952;
Brocker 1989), a spatial interaction model for the interregional commodity flows is
specified with nine independent variables in linear regression, similarly to Chun
et al. (2012). Four variables reflect the characteristics of origins, including income
per capita (o_inc), average plant size (o_plant), average production value (o_prod),
and the number of employed people (o_emp). The three variables associated with
destinations are population (d_pop), manufacturing (d_manuf), and income per
capita (d_inc). The interregional distances (dist) are calculated with spherical
distances between the population weighted centers. Finally, a dummy variable
(intra) is included to capture the effects of large internal flows. These independent
variables are transformed with natural logarithm except the intra dummy variable.
Although natural logarithm is also commonly applied to a dependent variable,
Box-Cox transformation is applied to make the transformed variable close to a
normal distribution (e.g., Celik and Guldmann 2007).

Network autocorrelation of the transformed variable is measured with the five
network weights matrix types defined in Egs. 6.1, 6.2, 6.3, 6.4, and 6.5. As you can
see in Table 6.1, the dependent variable has an extremely high level of network



Y. Chun

106

uorssaIdal
(0000°0) 6L 911 (0000°0) 6118 (0000°0) $6TL°98 (0000°0) L99029  (0000°0) #¥87'09  Tedul] Jo S[enpISaY (enea d)
(0000°0) STLT'S6T  (0000°0) £2€0°0FT  (0000°0) 6995 TH1  (0000°0) 8559°€0T  (0000°0) 9€15°96  d[quire juopuada | S UBIO JO I0S-Z
("9 ba) (¥79 "ba) (¢'9 'ba) (z9 ba) (19 ‘ba) sadA) XIew SJYSom JI0mMION

GgodAL y odK ], ¢ odA L, 7 odAL 1 odA1,

SOUOZ JV [TT 2y} Suowe sSmo[ AJIPOWOD [RUOISIIISIUL SY) JO AINSLIW UONB[ILIOI0INE JI0OMIAN 9 d[qe,




6 Network Autocorrelation and Spatial Filtering 107

autocorrelation regardless of network weights matrix type. However, it has the
highest z-score of Moran’s [ value (195.2715) with the network weights matrix in
Eq. 6.5. Also network autocorrelation is measured with the residuals of the base
linear regression model with the nine independent variables. As expected, the level
of network autocorrelation decreases noticeably, but still a significant level of
network autocorrelation remains among the residuals. The highest level of network
autocorrelation is observed with the network weights matrix in Eq. 6.5. Hence, the
network weight matrix in Eq. 6.5 is utilized in this research including ESF.

Table 6.2 shows the results of the base and the ESF models. The ESF model is
estimated with 212 selected eigenvectors. There are three noticeable differences.
First, eigenvector spatial filtering successfully accounts for network autocorrela-
tion. While the residuals of the base model have a significant level of network
autocorrelation (z-score of Moran’s I = 116.4794), the ESF model does not have a
significant level of network autocorrelation (z-score of Moran’s [ = —0.1184).
Second, the ESF model has a better model fit. Its adjusted R? value (0.7612) is
larger than that of the base model (0.6458). Also the ESF model has a smaller AIC
value than the base model. The likelihood ratio test statistically supports that the
ESF model has a better model fit (the test statistics is 5,061.98 with 202 degrees of
freedom). Third, statistical significance changed for three independent variables by
accounting for network autocorrelation. The origin income variable is not signifi-
cant at the 5 % level in the base model but becomes significant in the ESF model. In
contrast, two variables, plant size in origin and average production value, are
significant at the 5 % level in the base model, but become insignificant in the
ESF model. Unlike these differences, the estimates for the other variables are not
significantly different from each other, and the estimates are significant with the
expected negative sign in both models coefficients.

6.4.2 Interstate Migration Flows in the U.S.

The American Community Survey (ACS) has published state-to-state migration
flows among the U.S. states. Here, the 2005-2009 ACS migration flows among the
48 states and Washington D.C. in the continental U.S. are analyzed, excluding
Alaska and Hawaii due to their remote locations . Also, with a focus on interstate
migration, internal migration flows within one state are excluded. This gives total
2,352 (= 49* — 49) interstate flows. Figure 6.3 shows dominant migration flows
with more than 20,000 migrants, which are about top 3 % largest interstate
migration flows in the 5-year period. Some noticeable large migration flows with
more than 50,000 migrants are from California to Texas, from New Year to Florida,
from California to Arizona, from Florida to Georgia, from Louisiana to Texas, from
New York to New Jersey, and from California to Nevada. The large migration from
Louisiana to Texas in this period may be explained by the effects of hurricane
Katrina.
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Table 6.2 The results of the base and eigenvector spatial filtering linear regression models

Base model Spatial filter model
Coefficient Std. error Coefficient Std. error
Intercept —29.4192 1.3004™" —37.3490 1.2496™"
o_inc 0.1501 0.1187 0.4789 0.1136™""
o_plant —0.1714 0.0866" 0.0667 0.0868
o_prod 0.0694 0.0162"" 0.0260 0.0155
o_emp 1.3445 0.0180"" 1.3988 0.0164™"
d_pop 0.3542 0.0306""" 0.3702 0.0284"
d_manuf 0.9252 0.0253"" 0.9906 0.0240™"
d_inc —0.0326 0.0762 0.2641 0.0745™""
dist —0.0014 0.0000"" —0.0013 0.0000""
Intra 5.1917 0.1295™" 27393 0.1174™
z-score of Moran’s I (p value) 116.4794 (0.0000) —0.1184 (0.5471)
R? (Adjusted R?) 0.6461 (0.6458) 0.7653 (0.7612)
AIC 42,222.79 37,564.8
Log likelihood —21,100.39 (df = 11) —18,569.4 (df = 213)
# of selected eigenvectors - 202

Interstate migration
> 20,001 - 30,000

=== 30,001 - 40,000 p :

=38 40,001 - 50,000 \

=1 > s000

®  Weighted Mean centers i

Fig. 6.3 The dominant interstate migration flows with more than 20,000 migrants during
2004-2009

The interstate migration flows are modeled with Poisson and negative binomial
(NB) regression in a spatial interaction framework. As the numbers of migrants are
count, Poisson and NB models can provide a more appropriate modeling approach
(e.g., Flowerdew and Aitkin 1982; Abel 2010). Also, these models are estimated
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with the ESF method. In the models, seven independent variables are included,
which were obtained also from the 5-year ACS in 2009. Following an extended
gravity model of migration (e.g., Greenwood 1985; Hunt and Mueller 2004), three
origin variables are total population (o_pop), unemployment rates (o_unemp), and
income per capita (o_inc). The same three variables are included for destinations
(i.e., d_pop, d_unemp, and d_inc). The distance-decay (dist) is model spherical
distances between on weighted centers based on county populations using power
function instead of exponential function in Eq. 6.6.

Table 6.3 reports the results of the Poisson and NB models. When the results of
the base and the ESF Poisson models are compared, the ESF Poisson model has a
significantly improved model fit with a smaller AIC and a large log-likelihood value
than the base Poisson model. The log-likelihood ratio test confirms the increase of
the model fit (the test statistics is 2,337,349.4 with 145 degrees of freedom). The
dispersion parameter decreases to 530.38 in the ESF Poisson model from 1,819.62
of its counterpart base model. This considerable decrease of a scale parameter
estimate has been constantly observed in empirical flow data modeling (e.g., Chun
2008; Fischer and Griffith 2008), although this still shows a high level of
overdispersion. This might suggest a NB model specification to account for the
overdispersion (e.g., Congdon 1989).

The estimation results of NB models show a similar pattern as the Poisson
models when the base and ESF models are compared. The ESF NB model has a
better model fit with a smaller AIC value and a larger log-likelihood value. The
log-likelihood ratio test (its test statistics is 2,041.54 with 82 degrees of freedom)
confirms the improvement of model fit. Figure 6.4 shows scatterplots of observed
versus estimated values of the NB models. It shows that the estimated values of the
EFS NB model are closer to the observed values than those of the base NB model.
The ESF NB model has a larger estimate for 8 parameter than the base NB model.
As the variance of negative binomial given its mean () is g + p/0, the result of the
ESF NB model shows a less variability with a smaller estimate for dispersion
(0.2870) than the base NB model (0.6407).

Statistical inferences for independent variables change by accounting for net-
work autocorrelation in the Poisson and NB models. In the Poisson models, the
statistical inference for o_unemp and o_inc variables changed at the 5 % level. In
the base NB model, o_unemp and d_ unemp variables are significant at the 5 %
level but become insignificant in the ESF NB model at the same level. With regards
to the distance-decay effect, the ESF Poisson model produces a higher level of
distance-decay effect than the base Poisson model. However, the estimated
distance-decay effect of the ESF NB model is not statistically different from that
of the base NB model.
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Fig. 6.4 The scatterplots of observed vs. estimated values of the base NB model (/eft) and the ESF
NB model (right)

6.5 Conclusions

This research investigated network autocorrelation with the two empirical
interregional flows in the U.S.: interregional commodity flows and interstate migra-
tion flows. These flow datasets were analyzed using the ESF technique in a spatial
interaction modeling framework. The level of network autocorrelation in the
interregional commodity flows is measured with five different types of network
weights matrices. Although highly significant positive network autocorrelation was
measured with all types of network weights matrices, the highest level of network
autocorrelation was observed with one defined in Eq. 6.5. Since, in this network
weights matrix, all network flows between spatially neighboring origins and desti-
nations are considered as a neighbor, a more comprehensive network dependence
structure is reflected. Although an advanced model specification allows more than
one weights matrices simultaneously (e.g., LeSage and Pace 2008), many currently
available functions allow only one weights matrix for spatial models. Hence, it is
beneficial to reflect an appropriate network dependency structure in a weights
matrix, and the empirical results show that the network weights matrix in Eq. 6.5
is possibly a good specification.

The two empirical analyses demonstrate that the ESF method successfully
accounts for network autocorrelation and, consequently, leads to a better model
fit in both linear and generalized linear (i.e., Poisson and NB) regression models.
The ESF linear regression model does not have a significant level of network
autocorrelation, while the base linear regression model suffers from an extremely
high level of network autocorrelation in its residuals. One interesting point of the
Poisson and NB regression results is that an estimate for extra variability decreases
by accounting for network autocorrelation. This finding concurs with the fact that a
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variance increases in a data distribution when a significant level of spatial autocor-
relation is present in a random variable (Griffith 2011).

Gravity type spatial interaction models have been commonly utilized in quanti-
tative geographical flow modeling. These models are often estimated without
considering network autocorrelation, although the effects of spatial structure or
spatial autocorrelation in spatial interaction have been recognized in the literature.
Recent development in modeling network autocorrelation improves spatial inter-
action modeling for network flows. Especially, the ESF method, with its flexible
specification, furnishes a useful method to modeling network autocorrelation in
linear and generalized linear models.
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Chapter 7

Assortativity and Hierarchy in Localized
R&D Collaboration Networks

Joan Crespo, Raphaél Suire, and Jérome Vicente

Abstract One of the challenges of innovative clusters relies on their ability to
overlap technological domains in order to maintain their growth path along the
cycle of technological markets. The paper studies two particular structural proper-
ties of collaboration networks that provide new insights for understanding this
overlapping process. On the one hand, the degree distribution of knowledge net-
works captures the level of hierarchy within networks. It gives a first measure of the
ability of networked organisations to coordinate their actions. On the other hand,
the degree correlation captures the level of assortativity of networks. It gives a
measure of the ability of knowledge to flow between highly and poorly connected
organisations. We propose to combine these simple statistical measures of network
structuring in order to study the parameters window that allow localized knowledge
networks combining technological lock-in with regional lock-out.

7.1 Introduction

The study of R&D collaboration networks has become a subject of a growing interest
in spatial analysis and geography of innovation (Autant-Bernard et al. 2007;
Scherngell and Barber 2011). In particular, clusters analysis have found through the
identification of localized R&D collaboration networks new means for assessing
regional performances (Owen-Smith and Powell 2004; Vicente et al. 2011;
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Balland et al. 2013), beyond the simple co-location of innovative activities or the
black box of local knowledge spillovers (Breschi and Lissoni 2001).

Our contribution fits with this research challenge, with a particular focus on the
ability of localized R&D collaboration networks to maintain a long term perfor-
mance in a context of rapid business and technological cycles. The aim is to capture
the structural properties of collaboration networks that allow clusters performing in
particular technologies without compromising their renewal capabilities when
markets for these technologies decline. As a matter of fact, some clusters can
have difficulties in coping with technological and market decline, even if they
were leading places during the maturity stage of the industry. At the opposite some
others can succeed in disconnecting their cycle to the cycle of technologies by
reorganizing resources and networks towards a new stage of growth based on a new
or related growing market. Literature provides some highlighting stylized facts of
such patterns of cluster evolution. For instance, Saxenian (1990) describes the
renewal of the Silicon Valley in the 1980s from the declining semiconductor
industry towards the emerging computer industry. She stresses on the fact that
such a renewal was more the consequence of a reorganisation of knowledge flows
into the local organisational network rather than the consequence of market or
national policy concerns. Todling and Trippl (2004) converge towards the same
conclusions in their study of the differentiated renewal capabilities of clusters in a
sample of old industrial areas; while Cho and Hassink (2009) find evidences
according to which some clusters reach their maturity through an increasing rigidity
of their networks that plays against their ability to react to market cycles.

Then clusters life cycles (Suire and Vicente 2009, 2013; Menzel and Fornahl 2010;
Crespo 2011; Boschma and Fornahl 2012) can find explanations in the structural
organisation of collaboration networks and their evolving patterns along the cycle of
technologies and markets. Do successful clusters in a mature industry necessarily
locked into a rigid trajectory and then to decline, or are there particular structural
properties of localized collaboration networks that enable clusters to combine perfor-
mance in mature industries and renewal capabilities towards emerging ones?

In order to disentangle this question, we propose in a second section to discuss
the micro-motives of organisations for joining a network and building knowledge
relations, and the resulting consequences on the emerging structural properties of
knowledge networks. This section will show that network hierarchy and
assortativity appear as two salient topological and structural properties that play
together in the long term performance of localized R&D collaboration networks.
Section three proposes to associate these structural properties to two statistical
signatures of collaboration networks that provide tools for developing new evi-
dences on the critical factors of the long term dynamics of clusters.
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7.2 Clusters as R&D Collaboration Networks

7.2.1 Clusters Growth and Structuring

A cluster can now be defined as a local relational structure that results from the
identification of a set of nodes of various institutional forms (the organisational
demography) and the ties between them (the relational structure). Inter-
organisational ties in a cluster can be of different nature (productive, commercial,
cognitive or social) and of different geographical length. Our discussion focuses on
localized R&D collaboration networks, and then organisational relations locally
constructed to exchange knowledge in high-tech technological domains.

Network theory is very useful for analysing cluster properties, since it has
identified several drivers of network formation (Ahuja et al. 2012) that can be
founded on micro-economic behaviours. In particular, these micro-foundations are
necessary to understand how new entrants join a cluster, and (re)shape its relational
structure.

Firstly, networks can evolve through the entry of new nodes that do not connect
to any other node (isolates), or through the entry of new nodes that connect to others
by purely random attachment mechanism. It means that entering nodes connect to
others with no particular preference for their position in the structure. Isolate
entrants and random attachment mechanism will give rise to a rather flat hierarchy
of degrees in the collaboration network. In terms individual strategies, both kinds of
processes can be associated with a locational cascade (Suire and Vicente 2009). In
locational cascades, new entrants draw pay-offs from belonging to the structure as a
whole, not from targeted connections to particular nodes in the structure. Locational
cascades have been largely evidenced for clusters that attract new organisations
because of an external audience and a geographical charisma (Romanelli and
Khessina 2005; Appold 2005). Organisations converge to a “locational norm”
since the charisma displayed by one place in terms of R&D productivity provides
a signal of quality and a strong incentive for being located there, whatever the
position in the relational structure.

Secondly, entries can occur through a process of preferential attachment. In this
opposite case, nodes with many ties at a given moment of time have a higher
probability to receive new ties from new entering nodes. The higher the degree of
an organisation in the collaboration network, the more this organisation is attractive
for receiving new ties, so that the network grows through an increasing hierarchy
(Albert and Barabasi 2002). This behavioural pattern of nodes can be associated to a
network effect in location decision externalities. This means that the more new
entrants are connected to highly connected nodes, the more their payoffs increase,
due to the benefits of reciprocal knowledge accessibility and technological connec-
tions to an emerging and growing standard. This branching process is now linked to
targeted connections in the structure rather than random ones, and is consistent with
the relational constraints that typify the production and diffusion of technological
standards in high-tech industries and markets (Farell and Saloner 1985; Arthur
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1989). It is also consistent with the relational behaviour of spinoffs that tend to
connect to their often highly connected parent’s company (Klepper 2010).

Beyond node entry, clusters structure themselves through the construction and
dissolution of ties. The literature acknowledges two categories of individual incen-
tives that shape social structures, and dissociate closure from bridging network
strategies (Baum et al. 2012). Triadic closure implies that a node with links to two
other nodes increases the probability for these two nodes to have a tie between
them. Such an argument is grounded on the process of trust construction that grows
between two related nodes, because it fosters cooperation and knowledge integra-
tion within groups of nodes. Closure in collaboration networks strengthens the
mutual monitoring capability of organisations. Indeed, on one hand, it decreases
the possibilities of opportunistic behaviours (Coleman 1988). On the other hand, it
increases the effects of conformity required by technological standardization pro-
cesses: without such closure, organisations can be tempted to play the battle of
standards and accept the risk of a payoff decrease. As this process develops, the
clustering coefficient of the network increases, and triadic closure tends to shape a
core-component in the collaboration network (Borgatti and Everett 1999), in
particular when closure prevails for highly connected organisations. The second
category of individual incentives relates to bridging strategies and introduces the
idea of a more disruptive relational behaviour. For a given network, bridging ties
will be shaped when one organisation finds an opportunity to connect disconnected
organisations or groups of organisations. Such an agency behaviour (Burt 2005) is
more entrepreneurial than the former, since bridging provides access to new and
non-redundant knowledge and new opportunities for improving innovation capa-
bilities (Ahuja et al. 2009).

7.2.2  Structural Properties of R&D Collaboration Networks

According to the mechanisms of network formation and structuring at work in
clusters, they will display a high degree of variability in the structural and topo-
logical properties of their collaboration network. Previously captured using differ-
ent methodological approaches (Markusen 1996; lammarino and McCaan 2006),
this variety of cluster relational structures can be assessed using network theory
through a set of simple key-indexes that echo important features of collaborative
process of innovation.

The first property relies on the degree of connectedness of the collaborative
network. A cluster will be fully connected if there is no isolates in the population of
nodes and all the nodes can be reached by the other nodes. The second one is the
density of the collaborative network. Clusters can have a very weak level of
relational density if organisations value isolated strategies over knowledge partner-
ships. In that case, the clusters are no more than the simple result of a co-location
process, as for the well-known satellite platform of Markusen (1993). On the
contrary, clusters can display a high level of density when knowledge
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complementarities, trust and social proximity (Boschma 2005) lead to high levels of
local cohesiveness into the collaboration network.

More importantly, even for a full connectedness and a fixed level of density,
other structural properties matter and provides relevant information on the collab-
oration process. Considering the degree centrality of each organisation, i.e. direct
interaction neighbourhood, the distribution of degree can vary from a flat distribu-
tion to an asymmetric one. To put it differently, the shape of the degree distribution
refers to the hierarchy of positions in the web of relationships, and can be captured
by ranking organisations in a network according to their degree and putting into
relation with their own actual degree. Some organisations can have many relations
due to a high relational capacity (Konig et al. 2010). This is generally linked to the
size of the organisations, their absorptive capacities or the openness of their model
of knowledge valuation. On the contrary, some others remain poorly connected due
to their newness, their small size or their closed model of knowledge valuation.

Moreover, considering again the degree of each organisation, clusters can vary
in their structure according the shape of the degree correlation. Indeed, clusters can
display various levels of structural homophily, which is generally captured by an
index of assortativity (Newman 2003; Watts 2004; Rivera et al. 2010). Here again,
the assortativity of a network can be captured by the relation between the degree of
each organisation and the mean degree of the organisations in its direct
neighbourhood. The structure of relationships will be assortative when highly
(poorly) connected nodes tend to be connected disproportionately to other high
(weak) degree nodes. In that case, the degree correlation of the network is positive.
At the opposite, the structure of relationships will be disassortative when highly
(poorly) connected nodes tend to be connected disproportionately to other weak
(high) degree nodes. In that case, the degree correlation of the network will be
negative. Therefore, the level of network assortativity gives a formal representation
of the way knowledge flows between central and more peripheral nodes.

How these properties can play together for that localized R&D collaboration
networks perform of global markets without compromising their ability to adapt to
business and market cycles? Recall that some successful clusters can decline when
the market for their products decline, while some others succeed in disconnecting
their cycle from the cycle of markets and develop renewal capabilities towards
emerging ones.

The properties of hierarchy and assortativity provide new insights for that
purpose. As a matter of fact, successful clusters at a moment in time and in a
particular technological field are the ones that have succeeded in going from the
exploration of new ideas to the exploitation of a technological standard or dominant
design on a mass market, with in between, a collective process of knowledge
integration between complementary organisations along the knowledge value
chain (Cooke 2005). Beyond the traditional scheme of exploration/exploitation
that typifies the innovation process of a single organisation, the knowledge inte-
gration phase is at the heart of the cluster’s purpose. Indeed, the success of many
products results from their degree of compositeness (Antonelli 2006), the variety of
uses and applications supported by the products, scientific as well as symbolic
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knowledge (Asheim et al. 2011), and the compatibility and easy interoperability
between elements that are the rule of a dominant design diffusion (Frenken 2006).
The chasm that sometimes prevents some products from reaching the mass market
(Moore 1991) is more often the consequence of a failed integration process, i.e. a
problem of industrial organisation, rather than a problem of the product quality in
itself. Successful clusters are therefore the ones that achieve the imposition of well-
integrated and performing complete technological systems on mass markets. As the
literature shows (Klepper and Simmons 1997; Audretsch et al. 2008), these clusters
evolve from an initial scattered structure of burgeoning organisations in the early
market stages to a structure with a limited number of hub and oligopolistic
organisations in mature markets. Along the life cycle of products, and especially
composite ones, such a network dynamic produces path dependence and techno-
logical lock-in. The more the technologies generate increasing returns to adoption,
the more markets for these technologies become locked-in and resist to other
competing technologies (Arthur 1989).

But are clusters producing these technologies necessarily locked-in too? The
answer depends on the way in which their relational structure evolves along the life
cycle of products. First, recall that R&D collaboration networks can grow through
preferential attachment. This means that the more nodes display a high degree, the
more newcomers connect to these nodes, engendering a high level of hierarchy in
the degree distribution of organisations. But secondly, recall that beyond network
growth through node entry, networks can also evolve by the addition and rewiring
of ties between existing nodes through closure or bridging (Baum et al. 2012).
When closure prevails, the cluster evolves towards a high level of transitivity
between nodes which is the mark of isomorphic and conformist relational behav-
iours. In that case, the structure of the cluster exhibits tight couplings into a core-
component and a loosely connected periphery of nodes. The ossification of the
cluster goes with the formation of an assortative collaboration network, in which
highly connected nodes are tied predominantly with other highly connected nodes,
and poorly connected nodes remains connected between themselves. On the con-
trary, a structure with a disassortative web of knowledge relationships can emerge
as the entry of newcomers and rewiring process go. For that, the node bridging
strategy has to prevail over the closure strategy. Consequently, highly connected
organisations spend a share of their relational capacity towards peripheral organi-
sations, and the network as a whole displays more paths between highly and poorly
connected nodes than for the assortative network.

The patterns governing the entry dynamics into networks and the structuring
process that follows are at the heart of the lock-in/lock-out debate. Academics
acknowledge that preferential attachment is a natural pattern of social and human
networks that contributes to fostering the legitimacy of social norms and conformist
effects in Sociology (Watts 2004), or technological standards and dominant designs
in Business Studies (Frenken 2006). But the debate between closure and bridging is
more controversial, and it is also controversial for cluster studies (Eisingerich
et al. 2010). Indeed, closure favours technological lock-in and thus the ability of
the relational structure to perform in markets. The tight coupling between high
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degree organisations favours conformism and trust in a stable and cohesive struc-
ture that prevents opportunism and promotes an efficient integration of knowledge
in a context of weak environmental uncertainty. But closure favours network
assortativity, and then prevents regional lock-out, since the low connectivity
between the core nodes and the peripheral ones limits the re-organisation of
knowledge flows when uncertainty grows or when the market starts to decline. So
when preferential attachment and closure interact, the ability of clusters to deal with
a positive technological lock-in goes against the collaboration network to produce
the conditions for a regional lock-out (Simmie and Martin 2010).

In order to foster adaptability, clusters also have to develop bridging strategies in
order to open more disruptive relations, preserving minimal cohesiveness in the
core, while multiplying the channels for potential or latent flows of fresh and new
ideas coming from peripherals nodes (Grabher and Stark 1997; Cattani and Ferriani
2008). Such a mix of patterns does not undermine the hierarchy of degrees that
emerges when the technology goes towards exploitation. But to be disassortative,
the oligopoly structure of hub-organisations that appears as the technology reaches
maturity has to maintain a not too low amount of entrepreneurial connections with
the periphery, in order to overlap exploitation in a particular knowledge domain and
exploration in another related one (Cohen and Klepper 1992; Almeida and Kogut
1997; Schilling and Phelps 2007). Such a structural property of clusters is consistent
with the behaviour of firms according to their maturity and age. Indeed, Baum
et al. (2012) develop evidence on the predisposition of organisations to deal with
closure or bridging strategies according to their age. Supposing that the age of
organisations is positively related to their hub position and high degree, then the
renewal capabilities of local knowledge structures can be weakened by an insuffi-
cient level of connectivity with newcomers, as shown by Saxenian (1990) for the
semiconductor collaboration network in the Silicon Valley. If it is supposed that the
capacity constraints in the amount of ties an organisation can maintain is related to
its size and age, as Konig et al. (2010) do, then the high capacities of hub and central
organisations can be a strong source of renewal if they go against the natural
tendency to reproduce existing and conformist ties. Ahuja et al. (2009) find
empirical evidence on that by capturing the micro motives for more disassortative
behaviours. They highlight a threshold and non-monotonic effect in the strategy of
embeddedness and closure between central nodes. According to them, the growing
benefits in terms of trust and knowledge acquisition can go with an increasing
rigidity and conformity that produces disincentives for new collaborations. Like-
wise, in spite of risks of knowledge hold-up and contract incompleteness, they find
that peripheral organisations succeed in connecting to central nodes, through a
“creeping” strategy facilitated by the ability of mature organisations to find some-
times new and disruptive opportunities to connect to peripheral newcomers.
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7.3 Two Simple Statistical Signatures of Collaboration
Networks

The level of hierarchy of node degree and the level of assortativity therefore appear
as two simple statistical signatures of the ability of clusters to perform but also to
avoid negative lock-in through their endogenous renewal capabilities. The follow-
ing definition of statistical signatures of localized R&D collaboration networks
aims to discuss the parameters space that allows clusters overlapping exploitation
of technologies on mature markets and exploration of new or related technologies
for emerging markets.

7.3.1 Degree Distribution and Correlation

Hierarchy and assortativity can be measured through two simple statistical signa-
tures. The first corresponds to the degree distribution of the network. By degree
distribution, we mean the relation between the ranking of nodes in a network
according to their degree and their actual degree.' The more sloped the distribution
is, the more the network displays hierarchy in the degree of nodes. From weakly
connected nodes to highly connected nodes, the degree distribution exemplifies the
level of heterogeneity in the network in terms of actual relational capacity. The
second property corresponds to the degree correlation. Here, degree correlation is
defined as the relation between the degree of each node and the mean degree of
nodes in its neighbourhood. Networks can be characterized as assortative or
disassortative to the extent that they display a positive or negative degree correla-
tion. A network is assortative when high degree nodes are connected to other high
degree nodes, and low degree nodes are preferentially connected to low degree
nodes, so that the degree correlation is positive. And a network is disassortative
when high degree nodes tend to connect to low degree nodes, and vice versa, so that
the degree correlation is negative. For a given amount of nodes and ties in a
particular network, one can easily capture these two salient properties.

Consider a fixed number of nodes and ties in a network N.> If we note k the
degree of a particular node s, we can then write two simple equations to charac-
terize the network topology. By referring to a rank-size rule, we can classify node
degrees from the largest to the smallest® and then draw the distribution on a log-log
scale. Such that:

! Another traditional representation consists in mapping degree distribution using frequencies of
degree values.

2Then we only focus on the structuring of the network. Entries are considered as exogenous, or
occurring in previous periods.

31f two nodes have the same degree, we arbitrarily rank them as long as it has no incidence on the
slope on the power law.
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ky = C(k;)“,

with &, being the rank of the node /4 in the degree distribution, C a constant and
a < 0 the slope of the distribution or equivalently,

log (k) = log(C) + alog (k)

Secondly, we can calculate for each node %, the mean degree of the relevant
neighbourhood (V)), i.e.,

— 1
ki = HZiEv,,ki’

where k; is the degree of node i belonging to the interaction neighbourhood of
node /.

Then we estimate a linear relationship between k;, and k, such that
E = D + bky,

with D a constant and b a coefficient capturing the degree correlation.
If b > 0, the network N exhibits assortativity with a positive degree correlation,
whereas if b < 0, the network N is disassortative with a negative degree correlation.
Finally, thanks to the ordinary least squares method, the joint estimation of
parameters a and b enables us to characterize useful structural network properties.
{ degree distribution : log(k;) = log(C) + alog(k;) (7.1)
degree correlation : k, = D + bk, '

7.3.2 Discussion

Using Eq. 7.1, and considering a fully connected network N with a fixed number of
nodes (n = 33) and ties (r = 64),* Fig. 7.1 summarizes this proposition, giving
more details on three typical topologies and their statistical signatures.

(i) The so-called “flat” network presents a relatively flat degree distribution |
al = 0,37 with a degree correlation b ~ 0. This type of collaboration network
displays a strong potential for knowledge flows re-organisation and diffusion
since the nodes are linked by many paths. But such a random network does not
succeed in generating conformity effects and the emergence of technological
standards. Indeed, the lack of cohesiveness in to the network and the absence

“In such a way that the density remains the same for the three networks 2#/n(n — 1) = 0.1212,
where ¢ is the number of actual links and » the number of nodes).
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of a core group weaken the control of collective behaviours that would
exploit products on the market by efficiently gathering pieces of knowledge.
On the contrary, the assortative network presents a strong slope in the degree
distribution lal = 0,89 so that the cohesiveness of the core promotes a confor-
mity effect, and, from a technological perspective, a high probability of the
emergence of a standard. Nevertheless, its strong assortative structure (b > 0)
weakens its renewal properties since peripheral nodes are loosely connected to
the central ones. This excess of assortativity will reduce the ability of the
existing structure to activate new explorative ties when markets for the
exploited technology decline, due to a weak level of bridging between the
oligopoly structure and the peripheral ones. Therefore the assortative knowl-
edge network favours technological lock-in without maintaining regional
lock-out conditions because of its relative inability to overlap exploitation
links on mature markets and explorative ones on emerging related ones.

) Finally, the resilient network exhibits here again a high sloped degree distri-
bution with lal = 1,06, but the degree correlation is now negative (b < 0), so
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Fig. 7.2 Statistical signatures of cluster structural properties

that the network presents a certain level of disassortativity. In other words, this
negative correlation indicates a high level of connections between the core and
the periphery of the collaboration network, so that information and knowledge
can circulate through many structural bridges between highly and poorly
connected nodes. Thus targeted shocks on core members do not weaken the
whole structure to the same extent as in the previous structure. Similarly,
innovative or explorative behaviour can diffuse more easily from peripheral
to central members, due to the ability of the oligopolistic organisations to
combine closure and bridging and overlap explorative and exploitive phases in
their relational patterns.

Figure 7.2 provides a more abstracted representation of these critical structural
properties of local knowledge networks.

By representing degree distribution and degree correlation in the same layout,
one can have a better understanding of how the structure and properties of local
clusters can together improve aggregate performance and structural conditions for
renewal along the cycles of markets. The further up in the layout a cluster is, the
more the structural hierarchy of its collaboration network enables it to impose
standards and dominant designs on markets. And the further left in the layout it
is, the more the disassortative patterns of relationships in the network increase
regional renewal capabilities. The emerging oligopolistic structure that arises when
the technology reaches maturity has to remain sufficiently linked to fresh and new
ideas coming from peripheral but promising nodes for future collaborations. On the
other hand, when closure strategies in the mature oligopolistic structure exceed a
certain threshold, then redundancy of knowledge flows and conformity effects
prevail and the possibilities for regional resilience fall unavoidably. Then if some
clusters decline when their dedicated markets decline, the reasons are not neces-
sarily to find in an ossification of the structure of the network or in an excess of
rigidity due to the firm growing size, but in the relational strategies of hub and
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leading organisations, and a decreasing degree of openness towards peripheral but
strategic newcomers.

7.4 Conclusion

In spite of its high level of abstraction and complexity, the science of networks
applied to geography of innovation provides promising perspectives for static as
well as dynamic analysis of clusters. Here we have tried to show that it was possible
to reduce this complexity to two simple statistical signatures of collaboration
networks. Degree distribution and degree correlation highlight the critical structural
properties that increase the performance of clusters in a particular technological
field, without decreasing their renewal properties. If the hierarchy of degrees is a
more or less common pattern of social and organisational networks, disassortativity
is less manifest. Indeed, human and social behaviours are generally characterized
by structural homophily, so that the more an agent increases its relational capacity,
the larger is his tendency to interact with other highly connected agents. However,
this property of assortativity of local knowledge networks weakens the ability of
clusters to combine market exploitation and absorption of fresh and new ideas, and
then, can be a source of negative regional lock-ins.

The combined measures of degree distribution and degree correlation confirm
that a window of parameters exists, for which clusters can display performance in
the short run, and renewal capabilities in the long run. Capturing this window more
precisely requires an additional effort of modelling. But at this stage, such a
framework furnishes new perspectives to highlight empirical evidence on the
ability of regional systems of innovation to resist and adapt to turbulent macroeco-
nomic environments, new growing consumer paradigms and the shortening of
market cycles.
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Chapter 8

Observing Integration Processes in European
R&D Networks: A Comparative Spatial
Interaction Approach Using Project Based
R&D Networks and Co-patent Networks

Rafael Lata, Thomas Scherngell, and Thomas Brenner

Abstract This study focuses on integration processes in European R&D by ana-
lyzing the spatio-temporal dimension of two different R&D collaboration networks
across Europe. These networks cover different types of knowledge creation, namely
co-patent networks and project based R&D networks within the EU Framework
Programmes (FPs). Integration in European R&D — one of the main pillars of the
EU Science Technology and Innovation (STI) policy — refers to the harmonisation
of fragmented national research systems across Europe and to the free movement of
knowledge and researchers. The objective is to describe and compare spatio-
temporal patterns at a regional level, and to estimate the evolution of separation
effects over the time period 1999-2006 that influence the probability of cross-
region collaborations in the distinct networks under consideration. The study adopts
a spatial interaction modeling perspective, econometrically specifying a panel
generalized linear model relationship, taking into account spatial autocorrelation
among flows by using Eigenfunction spatial filtering methods. The results show that
geographical factors are a lower hurdle for R&D collaborations in FP networks than
in co-patent networks. Further it is shown that the geographical dynamics of
progress towards more integration is higher in the FP network.
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8.1 Introduction

Today it is widely recognised that first, innovation processes are increasingly based
on interaction, research collaborations and networks of various actors (see, for
instance, Powell and Grodal 2005),1 and, second, innovation is the key element
for sustained economic growth of firms, industries, regions and countries (see, for
example, Romer 1990).” Based on these arguments, the main focus of the Europe
2020 Strategy is on research and innovation in order to achieve a new growth path
that leads to a smart, sustainable and inclusive economy (European Commission
2011). In this context, the concept of the Innovation Union — one of the seven
flagships scheduled in the Europe 2020 Strategy — is intended to improve conditions
for innovation and knowledge diffusion to ensure that innovative ideas are effi-
ciently turned into new products and services that create growth and employment
(European Commission 2010). One of the main pillars of the Innovation Union is
the realisation of an integrated European Research Area (ERA), defined as one
explicit principal purpose to fulfil progress towards the Innovation Union.

The concept of the European Research Area (ERA) refers to the objective to
enable and facilitate “free circulation of researchers, knowledge and technology”
across the countries of the EU, and, by this, stimulating integration processes in
European R&D (see Commission of the European Union (CEU) 2008, p. 6). This
policy goal is to be addressed by improving coherence of the European research
landscape, thus removing barriers — such as geographical, cultural, institutional and
technological impediments — for knowledge flows, knowledge diffusion and
researcher mobility by a European-wide coordination of national and regional
research activities and policy programmes, including a considerable amount of
jointly-programmed public research investment (see Delanghe et al. 2009).

To gain insight into the nature of integration processes in European R&D, there
is urgent need for analysing the geographical dimension of R&D networks across

! The literature on R&D networks underlines the crucial importance of cooperative agreements
between universities, companies and governmental institutes, for developing and integrating new
knowledge in the innovation process (see Powell and Grodal 2005). This is explained by consid-
erations that innovation nowadays takes place in an environment characterised by uncertainty,
increasing complexity and rapidly changing demand patterns in a globalised economy. Organisa-
tions must collaborate more actively and more purposefully with each other in order to cope with
increasing market pressures in a globalizing world, new technologies and changing patterns of
demand. In particular, firms have expanded their knowledge bases into a wider range of technol-
ogies (Granstand 1998), which increases the need for more different types of knowledge, so firms
must learn how to integrate new knowledge into existing products or production processes. It may
be difficult to develop this knowledge alone or acquire it via the market. Thus, firms form different
kinds of co-operative arrangements with other firms, universities or research organisations that
already have this knowledge to get faster access to it.

2The theory of endogenous growth, and the geography-growth synthesis both consider that
economic growth and spatial concentration of economic activities emanate from localised knowl-
edge diffusion processes, in particular transferred via network arrangements between different
actors of the innovation system.
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Europe from a longitudinal perspective. The geography of such networks has —
from a static perspective — attracted increasing interest in Regional Science and
Economic Geography in the recent past. While from its beginning, the measure-
ment of such phenomena has faced numerous problems, the empirical investigation
of knowledge flows and R&D collaborations has significantly improved during the
1990s by using new indicators such as patent citations (see, for instance, the
pioneering study by Jaffe et al. 1993; Fischer et al. 2006), co-publications (see,
for instance, Hoekman et al. 2010) or project based R&D networks within the FPs
(see Scherngell and Barber 2009, 2011), and by introducing new methods, in
particular new spatial econometric techniques (see, for instance, LeSage
et al. 2007). Recent studies focus on the structure of knowledge flows by adopting
a spatial interaction modelling perspective (see, for instance, Scherngell and Barber
2009), employing a social network analysis perspective (see, for instance, Breschi
and Cusmano 2004) or a combination of both (see Barber and Scherngell 2011).

However, as these studies just provide a static picture on the geography of R&D
collaborations, novel questions arise — both in theoretical and empirical research as
well as in a European policy context — regarding R&D network structures and its
dynamics. Concerning the particular focus on integration processes in European
R&D, the evolution of different kinds of separation effects over time — such as
geographical, technological, institutional or cultural barriers — that determine R&D
collaboration networks is of crucial interest. Thus, this study shifts emphasis to the
investigation of the geographical dynamics of two different types of R&D collab-
oration networks across Europe, namely co-patent networks and project based R&D
networks within the European Framework Programmes (FPs). We take these types
of R&D collaboration networks to analyse integration processes in European R&D
over time from two different angles, shifting attention to a comparison of European
integration processes in these networks.

By this, the study addresses one of the major drawbacks of the current empirical
literature: the lack of a longitudinal and comparative perspective on distinct R&D
collaboration networks. Some exceptions are the studies of Maggioni and Uberti
(2009), Hoekman et al. (2010, 2013), and Scherngell and Lata (2013).3 The current
study intends to complement the picture drawn in these studies, by shifting attention
to a longitudinal and comparative perspective on two different R&D networks
across Europe. The objective is to identify and compare the evolution of

3Hoekman et al. (2010) and Scherngell and Lata (2013) investigate the ongoing process of
European integration by determining the impact of geographical distance and territorial borders
on the probability of research collaborations between European regions. By analysing
co-publication and FP network patterns and trends, the authors show that geographical distance
has a negative effect on co-publication activities and FP cooperation, while for the FP networks
this effect decreases over time. The study of Maggioni and Uberti (2009) focuses on the structure
of knowledge flows by analysing four distinct collaboration networks, including co-patenting.
Hoekman et al. (2013) focus on the effect of participation in FP networks on subsequent
international publications, showing that the FPs indeed positively influence international
co-publications, and, by this, seem to enhance integration across Europeans research systems.
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geographical, technological, institutional or cultural effects that influence the prob-
ability for collaboration activities in the different collaboration networks, and
provide direct evidence on integration processes in European R&D from different
angles. We adopt a regional perspective that is an appropriate approach to observe
different R&D collaboration networks in geographical space (see, for instance,
Hoekman et al. 2010; Scherngell and Barber 2009) over the time period 1999-2006.
The study employs a Poisson spatial interaction modelling perspective to address
these research questions. We adjust the spatial interaction models by accounting for
spatial autocorrelation issues of flows by means of Eigenvector spatial filtering (see
Chun 2008; Scherngell and Lata 2013).

The paper is organised as follows. Section 8.2 sets forth the conceptual back-
ground of the study with a special focus on ERA, before Sect. 8.3 reflects on the
different types of R&D collaboration networks under consideration. Section 8.4
describes the empirical setting and the data, accompanied by some descriptive
statistics and exploratory spatial data analysis. Section 8.5 specifies the empirical
model in form of a panel version of the spatial interaction modelling framework that
is used to identify the evolution of separation effects influencing the probability of
cross-region collaboration activities in the distinct networks. Section 8.6 presents
the modelling results, before Sect. 8.7 closes with a summary of the main results
and some conclusions in a European policy context.

8.2 The ERA Goal of Progress Towards More Integration
in European R&D

One significant turning point in the EU Science, Technology and Innovation (STI)
policy was the design of the concept of the European Research Area (ERA)
presented at the Lisbon Council in the year 2000, rooted in the increasing awareness
that European research activities suffer from diverse and fragmented national
research systems (Boyer 2009). The overall goal of ERA is to overcome fragmen-
tation in the European research system and to address the establishment of an
‘internal market’ for research across Europe, where researchers, technology and
knowledge are supposed to circulate freely (see Delanghe et al. 2009; European
Council 2000). The ERA green paper (CEC 2007) underlines the overall objectives
of the Lisbon strategy, emphasising that the future European science and research
landscape should be characterised by an adequate flow of competent researchers
with high levels of mobility between institutions by integrated and networked
research infrastructures and effective knowledge sharing, notably between public
research and industry. This requires the reduction of geographical, cultural, insti-
tutional, and technological obstacles in order to generate research collaboration
across European regions and countries (see, for instance, Hoekman et al. 2013;
Scherngell and Lata 2013).
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The Framework Programmes (FPs) of the European Commission (EC) constitute
the main instrument to achieve this goal, shifting emphasis on supporting and
stimulating collaborative R&D activities between innovating organisations across
Europe, in particular firms and universities. At the same time, regional and national
research policies deal with similar issues as reflected by a growing awareness
among national policy makers that national efforts are often insufficient to keep
pace in the international innovation competition. In this context the European
Council underlined the importance of cross border cooperation for the achievement
of these objectives and put collaborative R&D activities at the centre of its strategy
(Guzzetti 2009). Svanveldt (2009) highlights the crucial importance of cross-border
cooperation as instrument for adequately dealing these challenges.

During the last decade, the ERA concept has been developed further, becoming
strong political support in the context of the conception of the so-called Innovation
Union (European Commission 2010). As one of the seven flagships scheduled in the
Europe 2020 Strategy, the Innovation Union is intended to improve framework
conditions for innovation and knowledge diffusion. Moreover one of the main
objectives of the Innovation Union is to ... quickly taking all measures necessary
for a well functioning and coherent European Research Area in which researchers,
scientific knowledge and technology circulate freely, in which RDI investments are
less fragmented and the intellectual capital across Europe can be fully exploited”
(European Commission 2010, p. 7). In order to tackle these challenges, specific
commitments have been introduced. One of these commitments is to complete the
ERA by 2014 with the goal to remove the remaining obstacles for collaborative
knowledge production and consequently to foster the integration in the European
research landscape (European Commission 2010).

With this in mind, the present study aims to evaluate the progress towards more
integration in European R&D - as formulated in the concept of ERA and the
Innovation Union. To gain empirical insight into the nature of such integration
processes across Europe, the study focuses on a broad spectrum of R&D collabo-
ration activities, namely co-patent networks and project based R&D networks
within the FPs. In estimating the evolution of separation effects that capture the
above mentioned obstacles for collaborative knowledge production across Europe,
the analysis will show distinct mechanisms of integration processes corresponding
to the different types of R&D networks. The section that follows reflects on the two
different network types under consideration in some detail.

8.3 A Network Perspective on Integration in European
R&D

R&D networks — defined as sets of organisations performing joint R&D activities —
have attracted burst of attention in the recent past as essential element of modern
knowledge production and innovation processes (see, for instance, Castells 1996).



136 R. Lata et al.

In the current study, we take such network arrangements across Europe to analyse
integration processes in European R&D, focusing on two different types of net-
works that capture different types of knowledge production processes. We focus on
R&D networks in the form of joint patenting, resulting in co-patents, and project
based R&D networks within the FPs.

Co-patent networks mainly reflect research collaborations that are related to
applied knowledge generation focusing on the development of marketable innova-
tions and industry research activities (Maggioni and Uberti 2009). Patents represent
a well established indicator of knowledge generation activities and are widely used
in empirical studies on knowledge flows (see, for instance, Jaffe et al. 1993; Fischer
et al. 2006). A co-patent is defined as a patent invented by at least two inventors
from two different organisations. Therefore, it represents knowledge exchange
across actors within an inventor network in the process of patenting an invention
(see, for instance, Ejermo and Karlsson 2006).

The second type of R&D networks refers to project based R&D collaboration
within the FPs. While co-patent networks mainly reflect applied research, project
based FP networks involve basic and applied research aspects, given by the fact that
publications and patents may be outputs of FP networks. In the FP network, the
research collaboration is constituted by joint R&D projects conducted by organi-
sations distributed across Europe. The FPs are the main political instrument to
support pre-competitive collaborative R&D within the European Union. The key
objectives are, first, to strengthen the scientific research and technological devel-
opment in the scientific landscape, and, by this, to foster the European competi-
tiveness, and, second, to promote research activities in support of other EU policies
(Maggioni et al. 2009).* FP projects share specific characteristics (see for example
Roediger-Schluga and Barber 2006). First, they are all promoted by self-organised
consortia and have distinct partners — for instance individuals, industrial and
commercial firms, universities, research organisations, etc. — that are located in
different EU members and associated states. Second, they focus primarily on
pre-competitive R&D projects. Third, they are characterised by less market orien-
tation and longer development periods (Polt et al. 2008).

Given the properties of the two different network types under consideration, it
may be hypothesised that integration processes for these network types differ. This
may, on the one hand, be related to the different knowledge generation processes in
these networks, on the other hand, to governance rules and policy programmes
implemented by the EC influencing the resulting network structures. Spatial inter-
action models (see Sect. 8.5) will enable us to proof this hypothesis, and disclose
distinct spatial characteristics and collaboration patterns in the networks under

* Since their introduction in 1984, different thematic aspects and issues of the European scientific
landscape have been addressed by the FPs. Although the FPs have undergone different changes in
their orientation during the past years, their fundamental rational remained unchanged (Roediger-
Schluga and Barber 2006).
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consideration, and, by this, drawing a more detailed picture on integration processes
in European R&D.

8.4 Data and Descriptive Statistics

In our empirical analysis we aim to investigate integrations processes in European
R&D networks focusing on two different types of collaboration networks, that is FP
collaboration networks and co-patent networks. The EUPRO database is used to
capture project based R&D networks within the FPs, while the Regpat database is
taken to construct co-patent networks. The EUPRO database currently comprises
information on more than 60,000 research projects funded by the EU FPs and all
participating organisations. A network link is given between two organisations
when they conduct a joint research project in the FPs. We use information on the
geographical location in form of the city to trace the geographical dimension of the
network. The Regpat database contains information on patent applications from
various patent offices worldwide. It is provided by the OECD and contains, among
many others, all patent applications issued at the European Patent Office (EPO), and
the national patent offices of the European countries. A network link between two
organisations is given when inventors from two different organisations appear on a
patent application. We use information on the inventor address of an EPO patent
application to trace the origin of the invention.

The European coverage is achieved by using i,j = 1, ..., n NUTS-2 regions’ of
the 25 pre-2007 EU member-states as well as Norway and Switzerland. We extract
n-by-n collaboration matrices for each time period t =1,. . ., T, both for the FP- and

for the co-patent network, by aggregating the number of individual collaborative
activities at the organisational level in time period ¢ to the regional level. This leads
to the observed number of R&D collaborations y;;, between two regions i and j in
time period ¢ in the respective network, that is the FP and the co-patent network.
The resulting regional collaboration matrix ¥, for the two networks® for a given year
t contains the collaboration intensities between all (i, j)-region pairs, given the
i=1,..., n regions in the rows and the j = 1,..., n regions in the columns.’
Figure 8.1 illustrates the spatial distribution of the cross-region R&D collaborations
in the FP- (Fig. 8.1a) and the co-patent network (Fig. 8.1b) across Europe. In the

5Although substantial size differences and interregional disparities of some regions exist, these
units are widely recognized to be an appropriate level for modelling and analysis purposes (see, for
example, LeSage et al. 2007).

SNote that we do not distinguish between the FP network and the co-patent in the formal
description of data as well as the modelling approach in the section that follows.

"We use a full counting procedure for the construction of our collaboration matrices (see, for
example, Katz 1994). For a project with, for example, three different participating organizations a,
b and c, which are located in three different regions, we count three links (from a to b, from b to ¢
and from a to c).
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Fig. 8.1 Spatial distribution of the cross-region R&D networks for the year 2006. (a) R&D
collaborations within the FP-network. (b) R&D collaborations within the co-patent network

spatial network maps, the sizes of the nodes are proportional to the number of
regional participations in the two distinct networks. The darkness of the lines
corresponds with the number of joint R&D collaborations between two regions,
i.e. the darker the higher the interaction intensity. It is shown that the spatial
structures of the distinct networks differ markedly. The most striking difference
concerns the fact that the international collaboration activity is much higher in the
FP network than in the co-patent network. In the latter, R&D collaborations are
widely confined within national boundaries, while such boundaries seem to play a
minor role for the structure of the FP network. Furthermore, the intra-regional
collaboration intensity seems much higher in the co-patent network than in the FP
network, pointing to the geographical localisation of the co-patents within NUTS-2
regions, while the cross-region collaboration intensity is much higher in the FP
network.

Concerning the spatial distribution of the regions with high intra-regional
co-patent activities, a high intensity can be found for regions belonging to the
traditional industrial core of Europe (see Hoekman et al. 2012), also referred to as
the European ‘blue banana’ (Brunet 2002), while the participation within the FP
network seems to be spatially more dispersed. However, both networks seem to be
spatially concentrated in some European regions that show high collaboration
intensity. In this context the question arises, whether a spatial clustering of inter-
action patterns in the two networks can be observed, and which network shows a
higher degree of spatial clustering, also referred to as spatial autocorrelation of
flows (see, for instance, Berglund and Karlstrom 1999). Spatial autocorrelation of
flows is, for example, when flows from a particular origin may be correlated with
other flows that have the same origin, and, similarly, flows into a particular
destination may be correlated with other flows that have the same destination
(Scherngell and Lata 2013). In our case, this means that the intensity of R&D



8 Observing Integration Processes in European R&D Networks 139

collaborations from an origin region i to a destination region j may be correlated
with the intensity of R&D collaborations from the same origin i to another desti-
nation j, or vice versa. Such a situation is specifically interesting from the perspec-
tive of our research question on integration in European R&D, namely by assessing
whether such R&D collaborations are statistically concentrated to a geographical
core of regions that are located nearby to each other.®

In order to test for the existence of spatial autocorrelation of flows, we calculate
a Moran’s [ test for spatial dependence as widely used in exploratory spatial data
analysis (see Griffith 2003), given by

W
[1:yt , Vi (8.1)
Ve
where y, is a vector of our observed collaboration flows at time ¢ with N = n?
elements (Y;j) = (Viis « - -» Yines Y215 + + s Youts « + o Ynlts « - +» Yunr)» and W is defined
by W K W where W is the n-by-n spatial weights matrix and ) denotes the
Kronecker product. For W, we set

' 0 otherwise

where s,j(l) measures the great circle distance between the economic centers of two
regions i and j, and g; denotes the g-nearest neighbour of i. We define g = 5, as used
in various empirical studies dealing with European regions (see, for instance,
Scherngell and Lata 2013). The respective Moran’s [ statistics for the years
1999-2006 are reported in Table 8.1. The results are most often significant pointing
to substantial spatial autocorrelation of R&D collaborations in both networks under
consideration, i.e. a high number of flows is correlated with flows that come from
nearby origins, and going into nearby destinations. However, the degree of spatial
dependence is much higher for the co-patent network as has been expected consid-
ering the spatial distribution of the flows that are visualised in Fig. 8.1. Further-
more, the Moran’s I for the FP network shows a decreasing trend, while for the
co-patent network no time trend can be observed, pointing to differences in

8 From a theoretical perspective the spatial autocorrelation of R&D collaboration flows may be
explained by the assumption that the collaboration behaviour of one region influences the
collaboration behaviour of neighbouring regions because — as described in various empirical
studies — contiguity of regions may induce knowledge flows between them, to them, and from
them, and, thus, evoke the transfer of information on potential collaboration partners that are
located further away (Scherngell and Lata 2013). To give an example, if region A has many
collaborations with region B (that is no neighbour of region A), region A may influence a
neighbouring region C also to collaborate with region B due to information flows between region
A and region C, in particular flows of ‘know who’ type information (see Cohen and Levinthal
1990).
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Table 8.1 Spatial autocorrelation of R&D collaboration in two distinct networks

Moran’ 1
1999 2000 2001 2002 2003 2004 2005 2006
FP-network 0.016" 0.006° 0.003" 0.000 —0.001 0.007° —0.009 —0.001

Co-patent network 0.136"  0.120° 0.132" 0.144" —0.139" 0.153"  0.146° —0.147"
“significant at the 0.001 significance level

integration processes for the two network types. In this context, the existence of
spatial autocorrelation also bears important implications in a modeling context,
since estimates may be biased neglecting spatial autocorrelation issues of flows
(see, for instance, Fischer and Griffith 2008; Scherngell and Lata 2013).

8.5 The Empirical Model

This section shifts direct attention to the modelling approach used to estimate how
specific separation effects influence the variation of cross-region R&D collabora-
tions in two distinct collaboration networks over time, and, by this, providing direct
evidence on distinct integration processes in different types of R&D. We employ a
spatial interaction modelling approach.” In implementing a panel version of the
spatial interaction model, we are able to identify time effects that are necessary to
observe potential integration processes of the networks over the time period
1999-2006. In what follows we will specify the panel version of the spatial
interaction model, an extension accounting for spatial autocorrelation issues of
flows, and describe the independent variables of the model.

8.5.1 The Panel Version of the Spatial Interaction Model
to Be Estimated

Let us denote Y;;, as a random dependent variable corresponding to observed R&D
collaborations y;;; within the FP- or the co-patent network between origin i (i = 1,
..., n)and destinationj (j = 1,...,n)attime ¢t (¢t = 1, ..., T). As in the previous
section, we do not distinguish between the two networks in the formal model

presentation; our basic model is given by

? Spatial interaction models are widely used for modelling origin-destination flows data and were
used to explain different kinds of flows, such as migration, transport or communication flows,
between discrete units in geographical space (see, for instance, Fischer and LeSage 2010 among
many others).
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Yie|yije = My +&5je ,j=1,...,n; t=1,....T (8.3)

where 1, denotes some mean expected interaction frequency between origin i and
destination j at time ¢, &;; some disturbance term about the mean with the property
Ele;;ly;;;] = 0. As in classical spatial interaction theory (see, for instance, Fischer
and LeSage 2010), we model the mean interaction frequencies p;;, between origin
i and destination j at time ¢ by some origin function O;, which characterizes the
origin i of interaction in time period ¢, some destination function D; which
describes the destination j of interaction in time period ¢, and some separation
function S;, which accounts for the separation between an origin region i and a
destination region j in time period ¢. Then we use a multiplicative relationship for
our basic model, given by

/’lijtzoiijtSijt l,jzl,,n; tzl,...,T (84)
where
O,=0 ij=1,....n; t=1,...,T (8.5)
Dj,:d;z Lj=1,....,n; t=1,...,T (8.6)
K .
Sij[:exp Zﬂksz(jkt) oLj=1,...,n t=1,...,T (87)
k=1

()
ijt
variables that are introduced below. a;, a, and f3; are parameters to be estimated.

As has come into fairly wide use for spatial interaction models, we assume
(Y;j) ~ Poisson due to the true integer non-negative count nature of our R&D
collaboration flows (see, for instance, Cameron and Trivedi 1998; Fischer
et al. 2006). The resulting panel version of the Poisson spatial interaction model
is given by,

o;; and d, are origin and destination variables, s;;’ are K (k = 1, ..., K) separation

K
Hijp = €Xp (leOg(Oj,) =+ (XglOg (dj,) + Zﬁksl(j];) + Yii (88)
k=1

where y;; denotes the unobserved individual specific effect, also referred to as the
one-way error component model (see Baltagi 2008). The random term y;; is time
invariant but varies across all (i, j)-region pairs. In our case y,; accounts for region-
pair specific effects that are not included in the model. We assume the y;; to be
correlated across our time periods for the same (i, j)-region pair, i.e. we follow a
random effects specification, and integrate out the random effect y; of the joint
probability [T /— ;Pr(y;i, - - ..y;r) by obtaining
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Pr(yzjla-'-vyijT) =

(8.9)
Jpr(yiil’ < VT Vij) d?’ij = JPr(ylea e 7)’5,7} 7ij> g(?’ij) d?’ij-

Note that this is the same approach used in models for event counts to condition
the heterogeneity out of the Poisson model to produce the Negative Binomial model
(see Baltagi 2008), i.e. when (Y;;) ~ Poisson with mean ;;; as given by Eq. 8.8, and
exp(y;;) ~ Gamma, then our random effects Negative Binomial spatial interaction
model to be estimated is

(I w30 )

T
Pr(yijl, . 7y1'jT> = 7 Qi(l _ Q,‘)Zf:l y/'jr

(F(Q) H[Tzl yijt!) (Z,Tzl ﬂijz) Zl:l i

(8.10)

with

0 (8.11)

B 0
S
O+ Hi

where I'(.) denotes the Gamma distribution and @ its variance. Parameter estimation
is achieved via maximum likelihood estimation procedures (see Cameron and
Trivedi 1998).

8.5.2 Accounting for Spatial Autocorrelation and Time
Effects

Given the results of the spatial autocorrelation analysis of the previous section, it
can be assumed that spatial dependence among our collaboration flows may lead to
biased estimates. Thus, we re-specify our panel version of the Negative Binomial
spatial interaction model by accounting for spatial autocorrelation issues as well as
by introducing time effects enabling us to infer on time trends concerning the
evolution of collaboration patterns in the two networks.

As noted by Chun (2008), maximum likelihood estimation assumes that all
observations, in our case collaboration flows in our two networks under consider-
ation, are mutually independent. A violation of this assumption may be in particular
induced by spatial autocorrelation of flows leading to incorrect inferences due to
inconsistence of the standard errors, and, thus, unrealistic significances (Chun 2008;
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Griffith 2003)."> We follow Scherngell and Lata (2013) who apply a spatial filtering
method to filter out spatial autocorrelation of residual flows in a Negative Binomial
spatial interaction context. The essence of the spatial filtering approach is to extract
eigenvectors from a modified spatial weights matrix that serve as spatial surrogates
for omitted spatially autocorrelated origin and destination variables (see Fischer
and Griffith 2008). These proxy variables are extracted as n eigenvectors'' from the
modified spatial weights matrix of the form (I—11"Y) W (I—11"t) with I
denoting the n-by-n identity matrix, I is an n-by-1 vector of one’s, 1" its transpose,
and W the n-by-n spatial weights matrix, as defined by Eq. 8.2. The eigenvectors
can be interpreted as synthetic map variables that represent specific natures and
degrees of potential spatial autocorrelation (Chun 2008; Griffith 2003).

As noted by Griffith (2003) it is not appropriate to use the full set of E,
eigenvectors for the construction of the spatial filter variables. Further, we face a
situation where Eigenvectors have to be selected for each time period due to the
panel version of the spatial interaction model (Patuelli et al. 2011). As in Patuelli
et al. (2011) we select in a first step a subset of distinguished eigenvectors on the
basis of their Moran’s [ values. Then, we follow Fischer and Griffith (2008) and
extract those Eigenvectors E,, that show a higher Moran’s [ value than 0.25. In a
second step, it is necessary to adapt these Eigenvectors to our spatial interaction
framework; origin candidate eigenvectors are drawn from 1 ) E,, and the desti-
nation candidate eigenvectors are obtained from E,, ) 1. In a third step, these
Eigenvectors are added as explanatory variables to T = 9 cross-section versions of
the Negative Binomial spatial interaction model, from which statistically signifi-
cant Eigenvectors are identified. In a fourth step, we determine those eigenvectors
that are significant over all time periods and define the resulting set of common
origin and destination eigenvectors, E, and E,, respectively, as our time invariant

'°One way to capture spatial autocorrelation of flows is the use of spatial autoregressive tech-
niques (LeSage and Pace 2008). An alternative approach is the use of spatial filtering methods. The
key advantage of the spatial filtering approach is that it can be applied to any functional form and
thus, does not depend on normality assumptions (Patuelli et al. 2011). Consequently, we prefer the
spatial filtering approach over spatial autoregressive model as we are dealing with a Poisson spatial
interaction framework.

' The extracted eigenvectors have several characteristics. First, as shown by Griffith (2003), each
extracted eigenvector relates to a distinct map pattern that has a certain degree of spatial
autocorrelation. Second, the selected eigenvectors are centered at zero due to the pre and post
multiplication of W by the standard projection Matrix (I —1 IT%). Third, the modification of W
ensures that the eigenvectors provide mutually orthogonal and uncorrelated map patterns ranging
from the highest possible degree of positive spatial correlation to highest possible degree of
negative spatial correlation as given by the Moran’s I (MI). (Griffith 2003). Hence, the first
extracted eigenvector is the one showing the highest degree of positive spatial autocorrelation
that that can be achieved by any spatial recombination; the second eigenvector has the largest
achievable degree of spatial autocorrelation by any set that is uncorrelated with until the last
extracted eigenvector will maximize negative spatial autocorrelation (Griffith 2003).
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spatial filter.'> The time invariant spatial filter covers the total number of space-
time observations, and accounts for spatial dependence of flows in our origin and
destination data.

We add the selected origin filters E, and destination filters E, as regressors to our
panel version of the Negative Binomial spatial interaction model. Further we
introduce the subset of Z, time dummies in order to capture aggregate year effects
(Woodridge 2008)."* This leads to the spatially filtered panel version of the
Negative Binomial spatial interaction model accounting for time effects, given by
re-specifying the conditional mean y;; so that

/’lijt =

€Xp ZEq y,+ allog On + ZEI o, + 06210g ]t + Zﬂkvzlt + Zztl/t +7i
r=1 t=

(8.12)

The coefficients to be estimated for the spatial filters are v, and ¢,, v, is the
associated parameter for the time dummy at time z.

8.5.3 Independent Variables

We use one origin measure, and one destination measure for the FP network model
and the co-patent network model. For the model on the FP networks, the origin
variable o;, is measured in terms of organizations participating in joint FP projects
in region i, while the destination variable d;, denotes the number of organizations
participating in joint FP projects in region j. For the co-patent network model, the
origin variable o0;, is measured in terms of the number of co-patents in region i,
while the destination variable d;; denotes the number of co-patents in region j.
From the background of our research focus our interest is on K = 5 separation
measures: s< ) measures the geographical distance between the economic centres of
two reglons i and j in time period ¢, by using the great circle distance.'* I(Jz,) is a
neighbouring region dummy variable that takes a value of one if the regions i and

2We use an time invariant specification of the spatial filter as we assume an time invariant
underlying spatial process.
'3 In order to determinate changes of our separation variables we include interaction terms (see, for
an overview, Wooldridge 2008). In this procedure, variables of interest, for example R&D (see,
Griliches 1984), interact with time dummy variables and illustrate if effects changed over a certain
time period or not. In our case (time) interaction terms represent the interaction between our
separation variables and the time dummies and determinate how separation effects have changed
over time. These interaction terms pick up the inter-temporal variation of our separation effect and
remain only cross-sectional variation.
14Note further that according to Brocker (1989), we calculate the intraregional distance as
( = (2/3) (A; /72') , where A; denotes the area of region i, i.e. the intraregional distance is two
thlrd the radius of an presumed circular area.
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Jj in time period ¢ are direct neighbours, and zero otherwise. SE;) is a country border
dummy variable that we use as a proxy for institutional barriers. The variable takes
a value of zero if two regions i and j in time period ¢ are located in the same country,
and one otherwise. 55;: is a language dummy variable accounting for cultural barriers
that takes a value of zero if two regions i and j in time period ¢ are located in the
same language area, and one otherwise."” 51'; captures technological distance by
using regional patent data from the European Patent Office (EPO). The application
date is used to extract the data for each year of our time frame. We follow Moreno,
Paci and Usai (2005) and construct a vector for each region i that contains region i’s
share of patenting in each of the technological subclasses of the International Patent
Classification (IPC). Technological proximity between two regions i and j in time
period ¢ is given by the uncentred correlation between their technological vectors.

8.6 Estimation Results

Table 8.2 reports the results from the estimation of the spatially filtered random
effects Negative Binomial spatial interaction models as specified in the previous
section. Standard errors are given in brackets. The first column presents the results
for the FP network, while the second column contains the estimates for the
co-patent network. As can been seen, the estimates for the origin, destination and
separation variables are most often statistically significant. The bottom of the table
presents some model diagnostics that are of methodological interest.'®

The results are interesting in the context of the geography of innovation litera-
ture, but also very relevant and insightful from a European STI policy perspective.
Geographical distance, as evidenced by the estimate of f, exerts in both networks,
the FP network and the co-patent network, a negative effect on collaboration
probability, i.e. in both networks R&D collaboration intensity between two regions
significantly decreases when they are located further away in geographical distance,
and this effect seems only to differ slightly in magnitude. However, concerning
other geographical factors, we find a much stronger negative effect in the co-patent
network than in the FP network. One striking result concerns the high negative
effect of country borders, as evidenced by the estimate for f3;, for the co-patent
network as compared to the FP network, showing that for R&D collaborations in
the FPs country borders constitute only a low hurdle.

'3 Language areas are defined by the region’s dominant language. However, in most cases the
language areas are combined countries, as for instance Austria, Germany and Switzerland (one
exception is Belgium, where the French speaking regions are separated from the Flemish speaking
regions).

' The dispersion parameter is statistically significant in both model versions, indicating that the
Negative Binomial specification is essential to account for overdispersion in the data. A likelihood
ratio test which compares the panel estimator with the pooled estimator confirms the appropriate-
ness of the random effects specification.
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Table 8.2 Estimation results of the spatially filtered random effects negative binomial spatial

interaction models

FP-network Co-patent network

Origin and destination variable [a;] = [a5] 0.955"" (0.001) 0.354" (0.003)
Geographical distance [f] —0.209"" (0.005) —0.266""" (0.005)
Neighbouring region [£,] 0.229" (0.021) 0.710" (0.017)
Country border effects [f;] —0.063"" (0.016) —1.058" (0.016)
Language area effects [f4] —0.164""" (0.013) —0.740""" (0.014)
Technological distance [£s] —0.305"" (0.018) —1.536"" (0.023)
Number of significant time effects 7 2

Number of origin spatial filters 32 39

Number of destination spatial filters 29 47

—9.799""" (0.045)
19.804 (0.253)

—2.426"" (0.041)
2.722" (0.045)

Constant [ap]
Dispersion parameter

LR test (spatial filters) 1,335.17°7 4,932.10""
LR test (random effects) 190,354.7°* 30,634.3""
LR test (overdispersion) 281,497.1°" 2,232,6458""
Log likelihood —879,642.1 —435,630.7

Notes: ***signiﬁcant at the 0.001 significance level; The LR Test (spatial filter) is a Likelihood
Ratio test that compares the model fit of the spatially filtered model against the unfiltered model
versions. The test statistic is significant for both models. Thus the spatially filtered model
specification is appropriate. The LR Test (random effects) is a Likelihood Ratio test that compares
the panel estimator with the pooled estimator. The significant values confirm the importance of a
random effects specification. The LR Test (overdispersion) is the Likelihood Ratio Test that
compares the random effects negative binomial model to the random effects Poisson specification.
A significant value points to the existence of overdispersion, namely, the negative binomial
specification is to be preferred to the Poisson specification

In addition, co-patent networks seem to be to a high degree focused on
neighbouring regions, i.e. the collaboration significantly increases when two orga-
nisations are located in regions that share a common border (f3,). This effect is much
higher than in the FP network, pointing to a stronger spatial concentration and
geographical localisation of R&D collaborations reflected by co-patents.
Concerning language area effects (f4), we also find considerable differences
between the FP network and the co-patent network. The negative effect of language
is much higher for the co-patent network than for the FP network, i.e. the proba-
bility that organisations located in two different language areas collaborate is much
lower in the co-patent network. This may be explained by the fact that the co-patent
networks are much more subject to the industry sector, where such language
barriers may — as suggested by results provided from Scherngell and Barber
(2011) — constitute a lower hurdle than for research including public research
organisations, in particular universities. Technological distance (f5) is the most
important determinant for cross-region R&D collaborations in both networks, and,
by this, earlier results by Scherngell and Barber (2009, 2011) or Fischer et al. (2006)
are confirmed.
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However, the effect is much stronger in the co-patent network, which is to be
expected since co-patent networks are more application oriented, where specific
technologies and technological devices are more important. Furthermore, the FPs
are intended to support in particular interdisciplinary knowledge production. Over-
all, in the context of our focus on integration in European R&D, we can infer that
integration is much higher in the FP network than in the co-patent network, as most
of the separation variables exert a higher negative effect. This result has been
expected, since more applied oriented, competitive research is subject to a minor
group of actors often located within one region. The precompetitive character of
knowledge production in the FPs may lead to a higher propensity to share this
knowledge with partners, while patenting is to a larger degree subject to strategic
considerations of the innovating organisation. However, having in mind the ERA
goal of progress towards more integration in European R&D, covering different
phases of R&D, one may conclude that barriers hampering collaborations in the
co-patent network — for instance language barriers or country borders — should be
addressed more thoroughly. This may be done by education programs for over-
coming language barriers or policy initiatives that remove institutional hurdles for
collaborations in patenting, though, one have to be clear that due to the competitive
character of this type of research, such patterns may never fully disappear.

However, in order to be able to gain empirical insight into progress towards
more integration, we need to reflect on time trends. For this reason we look at
interaction terms between selected separation variables and our time dummies.
Table 8.3 presents the results for these interaction terms in the two networks for the
years 2000-2005.

The most striking result is that all separation variables accounting for spatial
effects significantly decline in the FP-network, i.e. the FP network becomes more
geographically integrated over the observed time period. This cannot be observed
for the co-patent network. In particular for the years 2004 and 2005 we cannot
identify a significant interaction effect between time and spatial separation vari-
ables, i.e. progress towards more integration cannot be observed, while this pro-
gress can be clearly observed for the FP network.

8.7 Conclusions

The focus of this study has been on the nature of integration processes in European
R&D. More specifically we have shifted emphasis to the investigation of the
geographical dynamics of two different types of R&D collaboration networks
across Europe, namely co-patent networks and project based R&D networks within
the EU Framework Programmes (FPs). Adopting a spatially filtered panel version
of the Negative Binomial spatial interaction model, we have identified and com-
pared geographical, technological, institutional and cultural effects that influence
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Table 8.3 Time trends for identifying distinct geographical integration patterns in the networks

Time interaction FP-network
terms 2000 2001 2002 2003 2004 2005
Geographical —0.057""  —0.042""  —0.039™" —0.033"" —-0.010"" —0.003"""
distance (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
Neighbouring 01717 0130  0.089™  0.088""  0.029™  0.002
region 0.012) (0.011) 0.011) 0.011) (0.010) (0.010)
Country border —0.083""  —0.073"" —0.074"" —0.060"" —0.018""" —0.000"""
effects (0.006) (0.005) (0.005) (0.005) (0.005) (0.005)
Time interaction Co-patent network
terms 2000 2001 2002 2003 2004 2005
Geographical —0.030""  —0.016"" —0.014™"  —0.007 —0.006  —0.008
distance (0.005) (0.005) (0.005) (0.005) (0.005)  (0.005)
Neighbouring 0.104™ 0.057"" 0.113"" 0.043 0.003  —0.024
region (0.029) (0.029) (0.029) (0.024) 0.028)  (0.028)
Country border ~ —0.087""  —0.059""  —0.065"" —0.064" —0.003 0.018"™
effects (0.023) (0.023) (0.023) (0.023) 0.022)  (0.022)

“significant at the 0.001 significance level, " significant at the 0.01 significance level

the probability for collaboration activities in the different collaboration networks
over time, and, by this, have provided novel evidence on integration processes in
European R&D.

The most elemental and important result, both in the context of the literature on
the geography of innovation as well as in a European policy context, is that
integration in FP networks seems to be much higher than in the co-patent network.
This is underpinned by the strong intra-national character of the co-patent network
in contrast to the FP network, as well as the higher geographical localisation of
co-patent collaboration activities within narrow geographical boundaries. These
results may on the one hand be explained by the different nature of the knowledge
creation process in the two networks, but also by policy related circumstances, in
that the FP programmes explicitly foster integration processes, and at the same time
more policy efforts should be envisaged that ease collaboration in more applied
oriented research.

Methodologically, the study is interesting as it breaks new ground by estimating
a panel version of the Negative Binomial spatial interaction model accounting for
spatial autocorrelation of flows. Though robustness of the model may be tested
further, the methodological approach seems to be an important contribution to the
debate on spatial autocorrelation issues of flows, applied to a panel data structure
posing additional modelling requirements that have been applied in this study.

Some ideas for future research come to mind. First, the estimation of time
trends, for instance by means of a dynamic version of the spatial interaction
model, is a core subject for future research, requiring both theoretical as well as
computational advancements. Second, the inclusion of other types of R&D
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networks in the comparative analysis, in particular co-publication networks, is
essential to complement the results provided by the current study.
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Chapter 9
The Community Structure of European R&D
Collaboration

Michael J. Barber and Thomas Scherngell

Abstract We characterize the geography of communities in the European R&D
network using data on R&D projects funded by the fifth European Framework
Programme. Communities are subnetworks whose members are more tightly linked
to one another than to other members of the network. We characterize the commu-
nities by means of spatial interaction models, and estimate the impact of separation
factors on the variation of cross-region collaboration activities in a given commu-
nity at the level of 255 NUTS-2 regions. The results demonstrate that European
R&D networks are made up of distinct, relevant substructures characterized by
spatially heterogeneous community groups.

9.1 Introduction

Today it is widely believed that interaction between firms, universities and research
organizations is crucial for successful innovation in the knowledge-based economy,
in particular in knowledge-intensive industries. This gives rise to the notion of
R&D networks, defined as a set of organizations performing joint R&D, for
instance in the form of collaborative research projects, joint conferences and
workshops, or shared R&D resources in the form of labor and capital (see, for
instance, Powell and Grodal 2005). By acknowledging that R&D networks are
crucial for innovation and that innovation is crucial for sustained economic growth
(see Romer 1990), it is natural that modern STI policies emphasize supporting and
fostering linkages between innovating actors. The principal European example of
such STI policy instruments are the European Framework Programmes (FPs),
which support pre-competitive R&D projects, creating a pan-European network
of actors performing joint R&D.
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Therefore, the investigation of the structure and dynamics of R&D networks is
of great current interest, both in a scientific and in a policy context, and currently
receives much attention in theoretical and empirical research of different scientific
disciplines (see Ozman 2009). Here, we can distinguish between empirical research
focusing on knowledge transfer in formalized joint research activities, as given by
joint R&D projects or joint publications, and empirical studies using networks as
measured by different indicators, such as co-patenting or patent citations, to trace
knowledge flows or knowledge spillovers between organizations, regions, or coun-
tries (see Ejermo and Karlsson 2006).

There are two major approaches taken to analyze R&D networks: a regional
science or geography of innovation perspective and a social network analysis
perspective. In a regional science or geography of innovation context, the investi-
gation of the geographical dimension of R&D collaborations is the central research
objective. This follows from the assumption that geographical space is crucial for
the localization of R&D collaborations and knowledge flows. The pioneering
empirical study of Jaffe et al. (1993) provides evidence for the localization hypoth-
esis of knowledge diffusion processes, in general confirmed by more recent empir-
ical studies using different indicators and new spatial econometric techniques (see,
for instance, Maurseth and Verspagen 2002; Fischer et al. 2006; Maggioni et al.
2007; Hoekman et al. 2009; Scherngell and Barber 2009, 2011). In a social network
analysis context, the focus shifts to the analysis of network structures and dynamics
using the mathematics of graph theory, under the assumption that structural rela-
tions are often more important for understanding observed behaviors than are
attributes of the actors (see, for instance, Zucker and Darby 1998a, b; Singh
2005; Thompson 2006; Vicente et al. 2010). Ter Wal and Boschma (2009) provide
an overview of the increasing importance of social network analysis techniques in
the fields of regional science and economic geography.

In this chapter, we combine the two research traditions by taking a social network
analysis perspective when identifying substructures of European R&D networks
constituted under the FPs, followed by taking a regional science perspective when
analyzing the geographical dimension of identified substructures. In this context,
previous work of and empirical studies by Scherngell and Barber (2009, 2011) are
central starting points for the current study. employ a social network perspective to
analyze R&D collaborations with the objective of unveiling the texture of the
European Research Area (ERA) using data on joint research projects of the fifth
EU Framework Programme (FP), while Scherngell and Barber (2009, 2011) focus on
the geography of R&D collaborations across European regions.

However, results of these previous empirical works may differ across relevant
substructures or communities of the whole FP network. Stated informally, a com-
munity is a subnetwork whose members are more tightly linked to one another than
to other members of the network. A variety of approaches have been taken to
explore this concept (see Fortunato 2010 for a useful review). Since network edges
often indicate relationships of interest, detecting community groups can be used to
partition the network vertices into meaningful sets, enabling quantitative
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investigation of relevant subnetworks. Properties of the subnetworks may differ
from the aggregate properties of the network as a whole, e.g., modules in the World
Wide Web are sets of topically related web pages.

The research approach applied in this chapter is relevant in both a scientific as
well as in a European policy context. It describes a way of looking into R&D
network structures in Europe that combines social network analysis with a geogra-
phy of innovation perspective. As noted by Autant-Bernard (2007), the geograph-
ical dimension of innovation and knowledge diffusion deserves closer attention by
analyzing such phenomena as R&D collaborations. Such analyses are also of
crucial interest for European STI policy, in particular for the integration and
cohesion objective outlined in the concept of the European Research Area
(ERA): improved coherence of the European research landscape and the removal
of barriers to knowledge diffusion in a European system of innovation (see CEC
2007). Of course, insight into the status of integration in different thematic areas is a
particularly valuable new view on this topic.

Further, the analysis provides important policy implications. By lending crucial
insight into real-world topical structures of R&D networks constituted under earlier
FPs, the analysis can inform the design of future FPs. Complementarily, a rich
picture for regional policy actors is provided at the regional level on leading
European regions with respect to cooperative research activities in specific thematic
areas.

The objectives of the current study are: first, to detect communities in European
R&D networks; second, to describe the spatial patterns of the identified communi-
ties; and, third, to identify determinants of the observed spatial patterns. We use
data on joint research projects funded by the European Framework Programmes to
capture European R&D networks. The identification of thematically distinct com-
munities in these networks is realized using graph theoretic techniques described by
Barber and Clark (2009). Further, we employ spatial analysis techniques to identify
and describe spatial patterns of identified FP communities at a regional level. By
means of a Poisson spatial interaction model, we estimate the impact of various
separation factors on cross-region collaboration activities in a given community. In
particular, we focus on how geographical distance impacts cross-region collabora-
tion intensities across different FP communities. The results demonstrate that
European R&D networks are not homogeneous, instead showing distinct, relevant
substructures characterized by thematically homogeneous and spatially heteroge-
neous communities.

9.2 Background and Main Hypotheses

R&D networks inducing knowledge transfer between firms, universities and
research organizations are considered to be crucial for successful innovation in
the knowledge-based economy in general, and in knowledge-intensive industries in
particular. In fact, we face a considerable increase — and we have done so for
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decades — in the number of inter-organizational R&D collaborations (Hagedoorn
and van Kranenburg 2003). The main reasons for this have been alleged to include
the increasing need to access external knowledge — characterized by complemen-
tarity and tacitness — and the high degree of strategic flexibility in collaborative
agreements (Kogut 1988; Teece 1992). Another reason may be the growing com-
plexity of technology and the existence of converging technologies (see Pavitt
2005). In particular, firms have expanded their knowledge bases into a wider
range of technologies (Granstrand 1998), increasing the need for distinct types of
knowledge, so firms must learn how to integrate new knowledge into existing
products or production processes (Cowan 2004). It may be difficult to develop
this knowledge alone or acquire it via the market. The importance of R&D networks
for innovation is also stressed by the various systems of innovation concepts that
focus on interactions between different actors in a specific region, country or sector
(see Lundvall 1992, among others). The main argument is that the sources of
innovation are often distributed between firms, universities, suppliers and cus-
tomers, giving rise to the notion of networks being the locus of innovation.
Networks create incentives for interactive organizational learning, leading to faster
knowledge diffusion within the innovation system and stimulating the creation of
new knowledge or new combinations of existing knowledge.

The EU follows this view in its science and technology policy, mainly reflected
in the concept of the European Research Area (ERA), whose aim is to improve
coherence of the European research landscape and remove barriers for knowledge
diffusion in a European system of innovation (see CEC 2007). The cornerstone of
corresponding EU policy instruments is formed by the Framework Programmes
(FPs) on Research and Technological Development. By means of this policy
initiative, the EU has co-funded thousands of trans-national collaborative R&D
projects. The main objectives of the instrument from a European technology policy
view are to integrate national and regional research communities and to coordinate
national research policies. Empirical studies such as the one of provide evidence for
the establishment of a pan-European network of firms, universities, public research
organizations, consultants and government institutions performing joint research
funded by the FPs (see Roediger-Schluga and Barber 2006 for a comprehensive
discussion of the EU FPs).

Previous empirical studies usually focused on complete FPs to describe net-
works of European R&D cooperation as captured by data on joint FP projects.
However, empirical results of these studies may differ across relevant, thematically
distinct community groups of the whole FP networks, and these differences may be
of crucial interest in a European policy context. Stated informally, a community is a
portion of the network whose members are more tightly linked to one another than
to other members of the network. Precise formulation of the problem presents two
main challenges. First, the notion of communities is somewhat vague, requiring a
definition to be provided for what formally constitutes a community. Second, it
must be possible to identify community solutions for networks of real-world
scientific or policy interest given limitations on time and computational resources.
The interplay between these challenges allows a variety of community definitions
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and community identification algorithms suited to networks of different sizes (for
useful overviews, see Fortunato and Castellano 2008; Fortunato 2010; Porter
et al. 2009).

Meaningful communities have been identified in many networks of diverse
character, corresponding to specialized research areas in co-authorship networks,
topically related pages on the World Wide Web, and functional modules in cellular
or genetic networks, amongst many others. Following the pioneering work of
Girvan and Newman (2002) and Newman and Girvan (2004), many researchers,
particularly in statistical physics, have investigated methods for detecting commu-
nities in large networks. Similarly, we hypothesize first that the European FP
network consists of relevant, thematically distinct subnetworks that show distinct
thematic and spatial characteristics.

Second, we hypothesize that geographic localization effects of knowledge flows
are significantly smaller within identified communities than for the whole FP5
network, since the transfer of tacit knowledge may be easier in thematically
relatively homogenous community groups. As mentioned above, the geography
of innovation literature argues that knowledge flows among knowledge producing
agents may be geographically bounded, since important parts of new knowledge
have some degree of tacitness. Though the cost of transmitting codified knowledge
may be invariant to distance, presumably the cost of transmitting non-codified
knowledge across geographic space rises with geographic distance (see Jaffe
et al. 1993; Audretsch and Feldman 1996). Scherngell and Barber (2009) provide
evidence for the geographical localization of FP5 networks. In this study, we
anticipate that localization effects decrease for an identified, thematically homog-
enous community. Due to a more homogeneous thematic focus of a community, the
transfer of non-codified knowledge may not be as costly as would be the case for
thematically more dispersed actors.

9.3 Empirical Setting and Data

Our core data set to capture collaborative activities in Europe is the EUPRO
database, which presently comprises data on funded research projects of the EU
FPs (complete for FP1-FP6) and all participating organizations. It contains system-
atic information on the participating organizations including the full name, the full
address, the type of the organization, and, where appropriate and possible, the
organizational subentity involved in the project. For a full description of the
EUPRO database and its contents, see Roediger-Schluga and Barber (2008)."

! The version of the EUPRO database used for this study contains information on 61,169 projects
funded from FP1 to FP6, yielding 323,638 participations by 60.034 organizations (status:
December 2010).
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9.3.1 Constructing FP5 Research Networks

The study at hand draws on information concerning joint R&D projects funded in
FP5.> We selected FPS5 as it has the greatest number of projects and, at the time of
the computations, the greatest processing of organizational data. Other FPs also
show strong community structure (Barber et al. 2008).

Using the EUPRO database, we construct a graph or network containing the
collaborative projects from FP5 and all organizations that are participants in those
projects; no other forms of collaboration (e.g., co-publication or co-patents) are
used here. An organization is linked to a project if and only if the organization is a
member of the project. Since an edge never exists between two organizations or two
projects, the network is bipartite. The network edges are unweighted; in principle,
the edges could be assigned weights to reflect the strength of the participation, but
the data needed to assign such network weights is not available.

Previous investigations of the FPs often have made use of one-mode networks
(Almendral et al. 2007; Barber et al. 2006; Roediger-Schluga and Barber 2008),
typically by (possibly implicitly) projecting the bipartite network onto a network of
organizations that are linked based on co-participation in projects. While the one-
mode networks can be useful, their construction discards information available in
the bipartite networks, which can lead to incorrect community structures (Guimera
et al. 2007). In the present work, we thus focus exclusively on representation of FP5
as a bipartite network.

9.3.2 Detecting Communities in European Collaboration
Networks

Community identification in networks is the assignment of the network vertices to a
smaller number of clusters. These clusters are hopefully relevant, and thus, drawing
on the context of social networks, called communities. Recent community identi-
fication methods are based on analyzing the network structure, identifying com-
munities as groups of vertices that are internally strongly connected but only
weakly connected to the rest of the network. In empirical networks, vertices within
communities are often found to be usefully related by content: edges reflect
underlying processes relevant to the entities corresponding to vertices, so commu-
nities consist of entities with similar properties.

Community identification methods have been developed that are efficient
enough to be suitable for large networks containing thousands or millions of
vertices and edges. One such method is the label propagation algorithm (LPA) of
Raghavan et al. (2007). Each vertex is assigned a label; a community is the set of all

2FP5 had a total budget of 13.7 billion EUR and ran from 1998 to 2002 (CORDIS 1998). See
Scherngell and Barber (2009) and CORDIS (1998) for further details on FP5.
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vertices with a particular label. The vertices are initialized with distinct labels, thus
beginning with all vertices in distinct communities. Vertices are repeatedly
updated, replacing their labels with ones that better match the labels of their
neighbors. Within tightly interlinked subnetworks, common labels reinforce one
another, encouraging uniform labels to be adopted. In contrast, weak linking
between tightly interlinked subnetworks means that relatively few neighbors will
differ in labels, hindering the propagation of labels between the subnetworks. These
two properties accord with the above idea of community, so the LPA proves to be
quite effective in practice (Leung et al. 2009).

Two properties of community solutions found by LPA warrant comment. First,
since each vertex has a single label, the communities are disjoint; no vertex belongs
to two communities. Second, community solutions are not generally unique; more
than one label may be satisfactory for a vertex. Both of these properties suggest that
some portion of the vertices may fit well in more than one community, so some care
should be taken in interpreting specific community memberships. In this work, we
consider statistical properties of the communities, which are more robust against
reassignment of a few labels.

In determining the communities, we make use of modest extensions to the LPA
(Barber and Clark 2009). The specifics of the algorithms are detailed in Appendix 3.
Since we investigate bipartite networks, the communities will include vertices from
the two parts of the network, i.e. communities will contain both projects and
organizations.

9.3.3 Observing Spatial Collaboration Patterns
of Commupnities Across European Regions

To analyze the spatial patterns of the identified communities we first geocode each
organization to a specific European region. We use a concordance scheme provided
by Eurostat between postal codes and NUTS regions to trace the specific NUTS-2
region of an organization. The European coverage is achieved by using 255 NUTS-
2 regions (NUTS revision 2003) drawn from the 25 pre-2007 EU member-states,
Norway and Switzerland. The detailed list of regions is given in Appendix 1.* Next
we construct a region-by-region collaboration matrix P’ for each community c,
aggregating collaborative activities at the organizational level to the regional level,
(©)

giving the observed number of R&D collaborations p;;* between two regions i and

j @, j,=1,...,n) for each community c.

3 We follow previous similar empirical work and rely on a NUTS2 disaggregation of the European
territory (see Fischer et al. 2006; LeSage et al. 2007; Scherngell and Barber 2009, 2011). The
NUTS?2 level provides the basis for the provision of structural funds by the EU, as well as for the
evaluation of regional growth processes across Europe (see Fischer et al. 2009).
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Following Scherngell and Barber (2009), we use a full counting method. For a
project with three participating organizations in three different regions — say
regions a, b, and ¢ — we count three links: from region a to region b, from b to
¢ and from a to c. When all three participants are located in one region we count
three intraregional links. We exclude self loops to eliminate spurious self collabo-
rations. The resulting regional collaboration matrix P‘“ then contains the collabo-
ch) between all (i, j)-region pairs for community c. The n-by-n

()

matrix for each community is symmetric by construction ( pf;') =p,

ration intensities p

9.4 Community Structure in European R&D Networks

Using the label propagation approach described in the previous section, we
partitioned the network into 3,482 communities. The communities vary greatly in
size, as measured either by the number of organizations in the community or by the
number of projects in the community. Most (2,878) communities are small,
consisting of just a single project with some or all of the organizations participating
in it; these offer little insight into collaboration patterns. In contrast, nine commu-
nities are large, containing 20 or more projects; these communities contain over a
third of the organizations and over half of the projects present in FP5. Here, we
consider the eight of these nine largest communities that are concerned with R&D;
the ninth is of different character than the others, focusing instead on international
cooperation. We do not further consider the smaller communities here, preferring
instead to investigate the large communities in greater detail.

Table 9.1 shows the sizes of the identified communities. We manually assign
names to the communities based on consideration of their constituent projects and
organizations.

The largest community (2,366 organizations), Life Sciences, shows a broad
selection of topics in biotechnology and the life sciences, including health, medi-
cine, food, molecular biology, genetics, ecology, biochemistry, and epidemiology.
The second largest (2,307 organizations), Electronics, focuses principally on infor-
mation technology and electronics, with projects in related fields dealing with
materials science, often related to integrated circuits; projects on algorithms, data
mining, and mathematics; and a definite subset of projects concerning atomic,
molecular, nuclear, and solid state physics. The third largest community (1,855
organizations), Environment, is focused on environment topics, including environ-
mental impact, environmental monitoring, environmental protection, and
sustainability.

As communities become smaller, they also become more focused. We see, for
example, three distinct transportation related communities. The largest of these
(1,146 organizations), Aerospace, is focused on aerospace, aeronautics and related
topics, including materials science, manufacturing, fluid mechanics, and various
energy topics. The next (686 organizations), Ground Transport, is focused on land
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Table 9.1 Sizes of FP5 communities

Community Number of organizations Number of projects
FP5 25,839 9,490
Aerospace 1,146 576
Aquatic resources 81 69
Electronics 2,307 1,447
Enviroment 1,855 971
Ground transport 686 374
Information processing 40 20
Life sciences 2,366 1,468
Sea transport 218 73

transport, with the projects dominated by railroad and, especially, automotive
topics; notable subtopics include manufacturing, fuel systems, concrete, and pol-
lution. The smallest transportation community (218 organizations), Sea Transport,
focuses specifically on sea transport; virtually all project titles are shipping-related.
The remaining communities, Aquatic Resources and Information Processing, are
the smallest and most uniform thematically. Their thematic contents are fisheries
and statistics.

Figure 9.1 visualizes the network of key FP5 communities. We determine the
position for the communities using methods from spectral graph analysis, so that
communities that are strongly interconnected are positioned nearer to each other
(for a practical overview see Higham and Kibble 2004). The node size corresponds
to the number of organizations of the respective community, with the widths of the
connection links corresponding to the number of inter-community project
participations.

Due to the strong inter-community links, the Electronics community appears to
have the highest collaboration intensity with other communities, i.e. competences
relevant to this field are used intensively in other fields. The Life Sciences commu-
nity shows a strong connection to the third largest community, Environment. The
three transport-related communities are positioned near one another, i.e. they show
relatively high inter-community collaboration intensity. The largest of these is
Aerospace, and shows a stronger interaction with Ground Transport than with
Sea Transport. The community Aquatic Resources has the strongest connection to
Environment, while Information Processing shows comparably low collaboration
intensities to all other communities.
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Fig. 9.1 Community groups in the network of FP5 R&D cooperation

9.5 Spatial Structure of Communities in European R&D
Networks

We next consider the spatial distribution of the eight FP5S communities. In Fig. 9.2,
we illustrate the spatial networks of the communities by aggregating individual
observations on the organizations of a community to the regional level. Note that
the region-by-region networks are undirected graphs from a network analysis
perspective. The nodes represent regions; their size is relative to the number of
organizations in the region that belong to the community.

The spatial network maps in Fig. 9.2 reveal considerable differences among the
collaboration patterns of the eight FP5 communities. One immediate result is that
the region Ile-de-France takes an important position in all communities. Further-
more, the visualization clearly reveals the different spatial patterns of the transport-
related communities, Aerospace, Ground Transport, and Sea Transport. Though
the region ile-de-France appears to be the central hub in the three transport related
communities, the directions of the highest collaboration flows from Tle-de-France
differ markedly. For the Sea Transport community we observe intensive collabo-
rations to important sea ports in the north (Zuid Holland, Agder og Rogaland,
Danmark, Hamburg) and the south (Liguria, Lisboa, Attiki), while, for the Ground
Transport community, collaborations to the east and south are dominant (Lombar-
dia, Oberbayern, Stuttgart).

In the Aerospace community we can observe a strong localization of collabora-
tions within France and its neighboring countries. In the largest community, Life
Sciences, the highest number of collaborations is observed between the regions of
lle-de-France and Piemonte (174), while the second largest community,
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Fig. 9.2 Spatial patterns of eight FP5 communities
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Electronics, is characterized by a very high collaboration intensity between the
regions of Tle-de-France and Oberbayern (474 collaborations), followed by Tle-de-
France and Koln (265 collaborations), and Oberbayern and Koln (157 collabora-
tions). In the Environment community we find the strongest collaboration intensity
between Danmark and Eteld-Suomi (131 collaborations). In the community Aquatic
Resources the regions Danmark and Agder og Rogaland (Norway) show the highest
collaboration intensity, not only between them (21 collaborations) but also to other
regions, while for the community /nformation Processing we identify Eteld-Suomi
as the central region, featuring intensive collaboration with Attiki, Lazio and
Lombardia.

To complement the maps shown in Fig. 9.2, the numbers of project participa-
tions by organizations in each region for each community are also of interest; we
tabulate the most active participants in Appendix 2. This provides insight into
which regions are most active for each community, in contrast to which regions
are best connected, as described above. Interestingly, well connected regions may
markedly differ from the most active regions.

9.6 Identifying Determinants of Spatial Community
Patterns

Our objective in this paper is not only to detect communities in European FP
networks and describe their spatial configurations, but also to investigate determi-
nants that influence the spatial community patterns. In particular, whether the
influence of geographical distance differs across communities is of crucial impor-
tance in the context of an aspired European Research Area. Thus, we measure
separation effects on the constitution of cross-region R&D collaborations in all
detected communities. The spatial interaction model of the type used by Scherngell
and Barber (2009, 2011) in a similar context serves again as an appropriate basis.
Spatial interaction models incorporate a function characterizing the origin i of
interaction, a function characterizing the destination j of interaction and a function
characterizing the separation between two regions i and j. The model is character-
ized by a formal distinction implicit in the definitions of origin and destination
functions on the one hand, and separation functions on the other (see, for example,
Sen and Smith 1995). Origin and destination functions are described using
weighted origin and destination variables, respectively, while the separation func-
tions are postulated to be explicit functions of numerical separation variables. The
general model in our case is given by

with
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Ai=Algi, ) =a i,j=1,...,n 9.2

Bj=B(bj,a) =b® ij=1,....n 9.3
K

Sij = exp Z/}’k dljk> Lj=1,...,n (9.4)
=1

where P(f') denotes a stochastic dependent variable that is realized by the number of

observed collaboration flows pfj <) between region i and region j for each community

c.* A; denotes the origin function, B; denotes the destination function, while S;;

represents a separation function. The a, and b; are measured in terms of the number
of organizations participating in EU FP5 pI'O]eCtS in the regions i and j, while a; and
a, are scalar parameters to be estimated. Note that due to the symmetry of the origin
and destination variables, we have a special case with a; = a,, i.e. numerical

results for a; and a, should be equal up to numerical precision. The d,(;()

K separation measures, the f; are corresponding parameters to be estimated that
will show the relative strengths of the separation measures. We rely on separation
measures used in similar studies (see, for instance, Fischer et al. 2006; Scherngell
and Barber 2009). We can group these separation variables into three categories:

(i) Variables accounting for spatial effects: dl(jl) denotes geographical distance

between two regions i and j as measured by the great circle distance between

the economic centers of the regions, while d( ) is a dummy variable that

controls for neighboring region effects. We set d< ) to one if two organizations
are located in neighboring regions and zero otherwrse where neighboring
regions are defined to share a common border.

(ii) Variables accounting for institutional and cultural effects: df? Vis a country

border dummy variable that takes a value of zero if two regions i and j are
located in the same country and one otherwise, while d,(-f) is a language area

dummy variable that takes a value of zero if two regions i and j are located in
the same language area and one otherwise.

(iii) Variables accounting for technological effects: d( ) measures technological
distance by usrng regional patent data from the European Patent office (EPO).
The variable is constructed (see Scherngell and Barber 2009) as a vector ¢;
that measures region i’s share of patenting in each of the technological sub-
classes of the International Patent Classification (IPC). Technological sub-
classes correspond to the third-digit level of the IPC systems. We use the
Pearson correlation coefficient between the technological vectors of two
regions i and j to define how close they are to each other in technological
space. Though we focus on spatial, cultural and institutional effects in this
study, we include technological distance, mainly as a control variable to allow
for the possibility that geographical distance may just be a proxy for techno-
logical distance.

“Note that we do not exclude zero-flows or intraregional flows.
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At this point, we are interested in estimating the parameters @, = a, and f; for
each community c. OLS estimation procedures are not appropriate for modeling
research collaborations, due to their true integer nature and due to the assumption of
non-normal errors. This suggests a Negative Binomial density distribution, i.e. a
Poisson specification with heterogeneity, allowing for the overdispersion often
observed for real world count data (see Cameron and Trivedi 1998). The Negative
Binomial density distribution in our case is given by

(c)

r(py +6! - o s \”
f(P(()) _ v o Al B.I Sl/ (9 5)
v r(p(‘>+1)r(6*1) AiBjSij+5_l A,‘Bj S,‘j+5_l .

ij

Here, I'(-) denotes the gamma function and ¢ is the dispersion parameter. Model
estimation is done by Maximum Likelihood procedures (see Long and Freese
2001).

Table 9.2 presents the sample estimates of the spatial interaction models, with
standard errors given in brackets. We use the Negative Binomial model specifica-
tion as given by Eq. 9.5. The dispersion parameter 6 is significant for all model
versions, indicating that the Negative Binomial version is the right specification, i.
e. the standard Poisson specification would be biased due to unobserved heteroge-
neity between the region pairs (see Scherngell and Barber 2009). The existence of
unobserved heterogeneity that cannot be captured by the covariates leads to
overdispersion and, thus, to biased model parameters for the standard Poisson
model.

The models produce quite interesting results in the context of the literature on
European R&D networks on the one hand, and in the context of the literature on the
geographic localization of knowledge flows on the other hand. The second column
contains, for the purpose of comparison, the sample estimates for total FP5. The
main conclusion of this model is that geographical distance between two organi-
zations has a significant negative effect on the likelihood that they collaborate.
However, technological distance between regions shows a larger negative effect on
cross-region collaborative activities.

The impact of the different separation effects varies considerably across
observed FP5 communities, both with respect to the magnitude of the estimates
and to statistical significance. The most important result is that the negative effect
of geographical distance is significantly weaker in any given FP5 community than
for all FP5 collaborations taken as a whole. This indicates that geographical
integration in European research is better developed in thematically more homog-
enous communities than between communities. In the Aquatic Resources commu-
nity, the Sea Transport community and the Information Processing community, the
effect of geographical distance is even insignificant — within these communities
there is no observable effect of geographical distance on the probability of
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collaboration between two organizations in Europe. The highest negative effect of
geographical distance within a community is identified for the Ground Transport
community (f; = —0.224).

While geographical distance effects are generally lower for the communities
than for all FP5 collaborations, the neighboring region effects are more variable.
Neighboring regions effects cannot be identified for most communities, with the
exception of the Environment community and the Aerospace community, which are
subject to stronger neighboring region effects than the average of all FP5 collabo-
rations, i.e. there is considerable significant spatial clustering of research collabo-
rations in these communities at the regional level. Also institutional and cultural
effects vary considerably across communities. The modeling results point to the
existence of institutional barriers at the national level for collaboration in the
Aquatic Resources community, the Electronics community, the Sea Transport
community, and the Aerospace community, even though FP5 as a whole shows
no such barriers. Language area effects are generally lower or insignificant, but the
Aquatic Resources community and the Information Processing community are
characterized by quite high negative language area effects, i.e. collaboration prob-
ability significantly decreases between organizations located in different language
areas.

Concerning technological distance, we find that, in each community, the nega-
tive effect of technological distance is higher than for the whole FP network, except
for Ground Transport; the collaboration probability with ‘technologically distant’
regions in a thematically homogenous community is lower than the average col-
laboration probability in FP5. For the outlier Ground Transport, one may speculate
that the thematic area uses rather mature and/or widely used technologies prevalent
in all regions, leading to a lower negative effect of technological distance. Addi-
tional background information on the composition and configuration of the com-
munities would be needed for further interpretations of the sample estimates. Most
importantly, the results demonstrate that separation effects for collaboration depend
on the FP communities; this may provide a starting point for further research, in
particular concerning the interpretation of the parameter estimates.

9.7 Conclusion

Using data on joint research projects funded by FP5, we have in this chapter
analyzed European R&D collaborations, investigating the hypotheses (1) that the
collaborative network consists of communities with distinct thematic and spatial
characteristics and (2) that geographical localization effects of knowledge flows are
smaller in these communities that for the network as a whole. We have used
techniques described by Barber and Clark (2009) to identify network communities,
subnetworks whose members are more tightly linked to one another than to other
members of the network. The determinants of the spatial patterns in eight of the
largest identified communities are examined by means of Negative Binomial spatial
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interaction models, estimating how various separation factors — such as geograph-
ical distance — affect the variation of cross-region collaboration activities in a given
community.

The results of the analysis are supportive of our hypotheses and of interest both
from a scientific point of view and in a European policy context. First, we detected
relevant, thematically relatively homogenous FP5 communities, providing a new
view on the R&D collaboration landscape in Europe. The largest communities
identified are Life Sciences, Electronics, and Environment; these may contain
further substructures of equal relevance. As communities become smaller, they
also become more focused. We identified three transport-related communities:
Aerospace, Ground Transport, and Sea Transport. The remaining communities,
Aquatic Resources and Information Processing, are the smallest and most uniform
thematically of those we have considered. Second, the spatial analysis of the large
communities clearly reveals that the spatial configuration varies across communi-
ties. However, the region of Ile-de-France plays a central role in each of the large
communities. Third, the estimation results of the spatial interaction model show
that the spatial integration of collaboration activities within the analyzed commu-
nities is more developed than for FP5 collaborations as a whole. The negative
impact of geographical distance on the probability that two organizations collabo-
rate is much lower when these organizations belong to the same community, while
the negative impact of technological differences is generally more pronounced.

From a policy perspective, the identification and characterization of the spatial
patterns of these thematically relevant substructures is of crucial interest. First, our
analysis may serve as a starting point for analyzing the empirical thematic land-
scape of European R&D collaboration, which is of strategic interest for the design
of future European policy programs supporting collaborative R&D, in particular
concerning the orientation of thematic foci. Second, the simple but essential spatial
characterization of the large communities may serve as an important source of
information for regional and national policy makers to identity their main peers for
benchmarking exercises or stimulation of specific collaborations; this is tabulated in
Appendix 2. Third, in the context of the European policy goal of an integrated and
coherent research area, the results indicate that the degree and evolution of inte-
gration may differ across technological areas and that specific technological char-
acteristics should be considered when assessing progress towards that goal.

The study suggests several directions for future research. First, the interpretation
of the spatial configuration of the largest identified communities was confined to the
descriptive level, as in-depth interpretations of the different separation effects
would require further background information about the actors involved in a
specific community. Further work could focus on interpretation of separation
effects, building on the results presented here. Second, the (spatial) evolution of
the detected communities over time could be investigated, providing a deeper
understanding on the dynamics of community formation and their spatial integra-
tion in the European R&D collaboration landscape. Third, while we have focused
on large communities that cover the majority of the projects, there are thousands of
smaller communities that we have not considered. Thus, strategies for analyzing
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these smaller communities could be explored, as could policy implications such as
how to encourage integration of the small communities into the larger ones. Finally,
alternative community identification methods could be used, for example to con-
sider overlapping or hierarchical communities, accounting for the subthemes rec-
ognized in the larger communities.
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Appendix 1

NUTS is an acronym of the French for the “nomenclature of territorial units for
statistics”, which is a hierarchical system of regions used by the statistical office of
the European Community for the production of regional statistics. At the top of the
hierarchy are NUTS-0 regions (countries) below which are NUTS-1 regions and
then NUTS-2 regions. This study disaggregates Europe’s territory into 255 NUTS-2
regions located in the EU-25 member states (except Cyprus and Malta) plus
Norway and Switzerland. We exclude the Spanish North African territories of
Ceuta y Melilla, the Portuguese non-continental territories Azores and Madeira,
and the French Departments d’Outre-Mer Guadeloupe, Martinique, French
Guayana and Reunion.

Appendix 2

We list here the most active regions for the eight communities considered in depth
in this paper. For each community, we give the 20 regions with the highest number
of participations in projects from the community. The number of participations is
shown parenthetically. Regions are given in descending order of the number of
participations.

Aerospace: fle de France (1232), Comunidad de Madrid (691), Oberbayern (581), Dan-
mark (526), Noord-Holland (440), Koln (365), Attiki (320), Inner London
(306), Lombardia (285), Greater Manchester (276), Bedfordshire &
Hertfordshire (271), Eteld-Suomi (269), Campania (266), Midi-Pyrénées
(248), Dytiki Ellada (247), Outer London (243), Lazio (241), Liguria
(239), Hampshire & Isle of Wight (225), Pais Vasco (224)

Aquatic Agder og Rogaland (97), North Eastern Scotland (93), Danmark (91),

Resources: Comunidad de Madrid (73), Flevoland (67), Noord-Holland (67), Ham-

burg (57), Algarve (55), Kriti (49), Attiki (47), Northern Ireland (39),
Southern and Eastern (38), East Anglia (31), Andalucia (26), Pais Vasco
(25), Galicia (24), Prov. West-Vlaanderen (22), Eteld-Suomi (21), East-
ern Scotland (18), Vestlandet (17)

(continued)
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Electronics: Tle de France (3537), Oberbayern (1390), Attiki (1182), Rhone-Alpes (1012),
Comunidad de Madrid (863), K&ln (831), Lombardia (768), Lazio (728),
Zuid-Holland (578), Danmark (563), Berkshire, Buckinghamshire &
Oxfordshire (559), Berlin (540), Région 1émanique (531), Noord-Brabant
(523), Inner London (519), Cataluna (509), Prov. Vlaams-Brabant (483),
Southern and Eastern (471), Stuttgart (433), Outer London (430)

Environment: fle de France (1020), Danmark (782), Attikiy/ Attiki (627), Eteld-Suomi
(580), Lazio (565), Zuid-Holland (526), Noord-Holland (479),
Comunidad de Madrid (426), East Anglia (414), Lombardia (395),
Southern and Eastern (378), Catalufia (373), Stockholm (357), Gelderland
(355), Wien (350), Andalucia (326), Utrecht (306), Karlsruhe (305),
Agder og Rogaland (295), Hampshire & Isle of Wight (294)

Ground Transport: fle de France (846), Stuttgart (698), Piemonte (587), Kéln (385), Zuid-
Holland (346), Lombardia (323), Oberbayern (293), Vistsverige (290),
Eteld-Suomi (226), Berkshire, Buckinghamshire & Oxfordshire (218),
Kentriki Makedonia (200), Lazio (177), Hannover (175), Pais Vasco
(168), Comunidad de Madrid (144), Steiermark (141), Noord-Holland
(127), Prov. Vlaams-Brabant (123), Rhone-Alpes (119), Darmstadt (118)

Information Eastern Scotland (40), Lombardia (21), Eteld-Suomi (20), Lazio (18), Zuid-

Processing: Holland (16), Hampshire & Isle of Wight (14), fle de France (12), Attiki

(11), Outer London (11), Stockholm (10), Sgr-@stlandet (10), Danmark
(7), Darmstadt (7), Southern and Eastern (7), Noord-Holland (5),
Comunidad de Madrid (4), Essex (4), Limburg (NL) (4), Luxembourg
(Grand-Duché) (4), Espace Mittelland (3)

Life Sciences: ile de France (1860), Danmark (1055), Gelderland (843), Outer London
(703), Lombardia (658), East Anglia (637), Comunidad de Madrid (636),
Inner London (605), Catalufia (569), Zuid-Holland (547), Utrecht (538),
Lazio (529), Stockholm (521), Karlsruhe (519), Prov. Vlaams-Brabant
(495), Rhone-Alpes (494), Southern and Eastern (481), Oberbayern
(458), Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest
(442), Eastern Scotland (396)

Sea Transport: Danmark (190), Liguria (144), Hamburg (137), fle de France (135), Outer
London (115), South Western Scotland (105), Agder og Rogaland (99),
Zuid-Holland (88), Attiki (76), Pays de la Loire (61), Bremen (58),
Surrey, East & West Sussex (48), Vistsverige (43), Comunidad de
Madrid (40), Eteld-Suomi (36), Friuli-Venezia Giulia (35), Gelderland
(35), Hampshire & Isle of Wight (33), Trgndelag (32), Région de Bru-
xelles-Capitale/Brussels Hoofdstedelijk Gewest (30)

Appendix 3

Raghavan et al. (2007) proposed a label propagation algorithm (LPA) for identify-
ing communities in networks. Community membership is tracked by labels
assigned to the graph vertices; a community is a set of all vertices with a particular
label. Each vertex is assigned a single label, and thus belongs to a single
community.
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Fig. 9.3 Community @
identification with label
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Call a label satisfactory for a vertex when no other label occurs more frequently
among its neighbors. The core of the LPA is a process of replacing unsatisfactory
labels with satisfactory ones, continuing until all vertices have satisfactory labels.
This idea is illustrated in Fig. 9.3 using a toy network with visually apparent
community structure. In Fig. 9.3a, there are three different labels, shown by the
vertex shading. The black and white labels are all satisfactory for their vertices. Of
the three gray labels, two are unsatisfactory for their vertices, shown by double
borders on the vertices: one neighbors a single gray vertex and two black vertices,
the other neighbors a single gray vertex and three white vertices. The third gray
label is satisfactory: the vertex neighbors two gray vertices and two black vertices.
In Fig. 9.3b, all vertices have satisfactory labels.

The algorithm begins from a state where all vertices have different labels (and
thus are generally all unsatisfactory). Taken in random order, the vertices are
considered to see whether their labels are satisfactory and updated to be satisfactory
when not; if multiple labels would be satisfactory, one is chosen at random. For the
example network shown in Fig. 9.3a, the two vertices with gray labels must then be
updated, one to have a black label, the other to have a white label; note that
changing these two gray labels will cause the third gray label to become unsatis-
factory. Multiple relabeling passes are made through the vertices, with the algo-
rithm halting when all vertices have a satisfactory label, such as in Fig. 9.3b.

The LPA offers a number of desirable qualities. As described above, it is
conceptually simple, being readily understood and quickly implemented. The
algorithm is efficient in practice. Each relabeling iteration through the vertices
has a computational complexity linear in the number of edges in the graph. The total
number of iterations is not a priori clear, but relatively few iterations are needed to
assign the final label to most of the vertices (typically over 95 % of vertices in
5 iterations, see Raghavan et al. 2007; Leung et al. 2009).

The LPA defines communities procedurally, rather than as optimization of an
objective function, and thus provides no intrinsic measure for the quality of
communities found. To assess community quality, we can introduce an auxiliary
measure, such as the popular modularity measure (Newman and Girvan 2004); in
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this work, more suitable is a version of modularity specialized to bipartite networks
(Barber 2007). Using modularity, communities found using LPA are seen to be of
high quality (Raghavan et al. 2007): label propagation is both fast and effective.
Indeed, Leung et al. (2009) have proposed extensions to the label propagation
algorithm that make it comparable to the best algorithms for community detection
in quality and efficient enough to analyze very large networks.

Barber and Clark (2009) have elucidated the connection between label propa-
gation and modularity, showing that modularity can be maximized by propagating
labels subject to additional constraints and proposing several variations of the LPA.
In this paper, we make use of a hybrid, two-stage label propagation scheme,
consisting of the LPAr variant followed by the LPAb variant (see Barber and
Clark 2009 for details). LPAr is defined similarly to the original LPA presented
above, but with additional randomness to allow the algorithm to avoid premature
termination. In practice, this produces better communities as measured by modu-
larity than does LPA. LPAb imposes constraints on the label propagation so that the
algorithm identifies a local maximum in the bipartite modularity. The overall
hybrid algorithm thus belongs to the recent class of algorithms based on modularity
maximization (for a survey, see Fortunato 2010).
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Chapter 10
Determinants of International R&D
Activities: Evidence from a Gravity Model

Sandra Leitner, Robert Stehrer, and Bernhard M. Dachs

Abstract Firms not only produce or sell their products and services abroad, but
increasingly also conduct research and development (R&D) at locations outside
their home countries — a phenomenon referred to as the ‘internationalization of
business R&D’. This chapter analyses the internationalization of business R&D for
OECD countries and identifies specific home and host country characteristics that
are conducive or obstructive to R&D expenditure of foreign affiliates. The analysis
employs a recently compiled novel data set on R&D expenditure of foreign-owned
firms in the manufacturing sectors of a set of OECD countries. The results point to
the pivotal role of market size and of cultural, physical and technological proximity
for R&D efforts of foreign-owned firms. Moreover, the analysis demonstrates that
sufficient human capital and strong indigenous technological capabilities in the host
country tend to be conducive to R&D activities of foreign affiliates. In contrast, a
rich human capital base in the home country is obstructive to the process of R&D
internationalization. Geographic distance turns out to be a strong deterrent.

10.1 Introduction

Firms not only produce or sell their products and services abroad, but increasingly
also conduct research and development (R&D) at locations outside their home
countries — a phenomenon referred to as the ‘internationalization of business
R&D’ (Narula and Zanfei 2005; OECD 2008b; Hall 2010).

The internationalization of business R&D is more of a recent phenomenon. The
international economics as well as the international business literature long
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regarded R&D and the accumulation of knowledge as activities that are bound to
the home countries of multinational firms. In their seminal paper on R&D in large
multinational enterprises, Patel and Pavitt (1991, p. 17) concluded that the produc-
tion of technology remained ‘far from globalized’, but was concentrated in the
home countries. Hence in the 1990s, R&D was still ‘an important case of
non-globalization’ (Patel and Pavitt 1991, p. 17). Theories of the multinational
firm following Hymer’s (1976 [1960]) seminal contribution stress that the interna-
tional expansion of R&D is a means to exploit existing intangible assets and
knowledge capital of the firm in foreign markets (Dunning 1988; Markusen 2002;
Helpman 2006; Forsgren 2008).

However, during the last two decades, the internationalization of business R&D
activities has accelerated strikingly. Specifically, as highlighted by the OECD
(2008a), between 1995 and 2003, R&D expenditure of foreign affiliates increased
twice as rapidly as their turnover or their host countries’ aggregate imports. This
renders R&D activities of foreign affiliates one of the most dynamic elements of the
process of globalization. Until recently, the main actors and recipients of cross-
border R&D expenditure were developed countries. Lately, some new players
emerged, giving rise to new patterns of R&D internationalization. Especially in
Asia, emerging economies gained importance as host countries of R&D interna-
tionalization activities but developing countries also increasingly engaged in out-
ward R&D activities. Despite these developments, the largest part of international
R&D still takes place between the triad area, comprising the US, the EU and Japan
(OECD 2008b).

Given the benefits that accrue from the presence and activities of R&D intensive
foreign-owned firms, attracting them has been high on the political agenda of many
economies. R&D expenditure of foreign-owned firms may increase aggregate R&D
and innovation expenditure of the country. It may give rise to substantial informa-
tion and knowledge spillovers (Blomstrom and Kokko 2003), foreign-owned firms
may boost the demand for skilled personnel including R&D staff, or R&D efforts
and the presence of foreign-owned firms may lead to structural change and agglom-
eration effects (Young et al. 1994).

The ensuing analysis investigates determinants of the process of international-
ization of business R&D. It uses a novel and unique database of bilateral business
R&D expenditure of foreign affiliates in the manufacturing sector of selected
OECD countries for the period from 2001 to 2007. Given the type and quality of
the data, the analysis contributes greatly to the ongoing discussion as to key
determinants of the process of R&D internationalization as previous data-related
shortcomings are remedied. Specifically, since the analysis uses R&D expenditure
data instead of patent data, some of the potential biases and limitations patent data
suffer from are bypassed and avoided (Cohen et al. 2000; Hinze and Schmoch 2004;
Nagaoka et al. 2010). Methodologically, an extended gravity approach is taken
which helps shed light on the roles of standard gravitational forces like market size,
distance, cultural or physical proximity for the internationalization of R&D,
extended to include additional technology and innovation related drivers of R&D
internationalization.
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The results highlight the essential role of market size, cultural, physical and
technological proximity for the process of R&D internationalization. Moreover, it
finds evidence that additional scientific or technological capabilities matter
strongly: abundant human capital in the host country is conducive to R&D activities
of foreign-owned firms, while a lack of human capital in the home country appears
to encourage the relocation of innovative activities abroad. Similarly, strong and
internationally competitive R&D capabilities in the host country turn out to be
conducive to R&D efforts of foreign-owned firms. They can exploit these capabil-
ities for own research activities. Finally, the analysis finds that R&D expenditure of
foreign-owned firms is regionally decentralized and not concentrated within
the EU.

The remainder of the paper is structured as follows. Section 10.2 presents related
literature and previous empirical evidence on important determinants of cross-
border R&D activities while Sect. 10.3 discusses the data used in the analysis and
provides some general patterns of R&D internationalization. Furthermore, some
hypotheses are formulated that will be tested empirically in the ensuing analysis.
The econometric specifications tested are outlined in Sect. 10.4 while Sect. 10.5
presents and discusses the results. Finally, Sect. 10.6 concludes.

10.2 Related Literature

Empirical evidence is quickly mounting: the process of the internationalization of
R&D is the product of a number of different key factors and drivers. In that respect,
an ever growing body of empirical literature consistently points at the pivotal role
played by economic size of countries in fostering cross-border R&D activities.
Specifically, foreign-owned firms may have to adapt their products and production
processes to suit local demand patterns, consumer preferences or to comply with
legal regulations and laws. In view of that, these firms may find it easier to cover the
cost of adaptive R&D in larger markets with higher demand for their goods and
services, better sales prospects and consequently larger revenues. In the same way,
foreign-owned firms may have stronger incentives to develop new products or
processes from scratch in faster growing markets. As highly uncertain and risky
activities, innovative activities gobble up immense resources that can easier and
faster be recovered on larger markets with more promising market potentials. Dachs
and Pyka (2010) use EPO patents for the period 2000-2005 to identify essential
determinants of cross-border patents. They show that cross-border patenting activ-
ities are significantly higher if both home and host economies are larger.
Moreover, empirical studies have stressed that cross-country differences in the
quality and size of a skilled workforce are an important determinant of the process
of R&D internationalization: Lewin et al. (2009) demonstrate that a shortage of
high skilled science and engineering talent in the US explains the relocation of
product development to other parts of the world while Hedge and Hicks (2008)
stress that innovative activities of overseas US subsidiaries are strongly related to
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the scientific and engineering capabilities of the host countries. A similar pull-effect
of human capital is identified by Erken and Kleijn (2010) who show that strong
human resources in science and technology in the host country are strong location
factors for international R&D activities.

In addition, technological proximity which captures similarities in technological
specialization among countries is found to be conducive to cross-border innovative
activities. Guellec and van Pottelsberghe de la Potterie (2001) find that countries
with similar patterns of technological specialization tend to more strongly cooper-
ate in patenting activities.

Similarly, stronger R&D efforts in terms of higher R&D intensities in both home
and host countries foster the internationalization of R&D (Dachs and Pyka 2010).
Moreover, effects tend to differ across countries as the technological strength of the
home country appears to exert a stronger push effect than the technological strength
of the host country. In a similar vein, Erken and Kleijn (2010) show that the stock of
private R&D capital in a country represents an essential driver of the process of
R&D internationalization, either as a guarantee for sizeable knowledge spillovers,
or as a so-called ‘place-to-be effect’.

The attractiveness of countries for overseas R&D activities is also shaped by
public policy intervention. Specifically, as highlighted by Steinmueller (2010),
science, technology and innovation (STI) policy measures like public subsidies
for R&D performing firms or measures to foster cooperation among firms or
between firms and universities or research institutes may remove obstacles to
innovation and strengthen the capabilities of national innovation systems. An
innovation-friendly environment, in turn, may be a considerable locational advan-
tage and influence internationalization decisions of firms in R&D. Related to that,
Dachs and Pyka (2010) emphasize that strong IPR mechanisms also matter for
cross-border patenting. As such, they highlight that systematic policies aimed at the
strengthening of prevailing IPR mechanisms help render cross-border patenting
activities more attractive.

Moreover, while differences in labour cost between the home country and
locations abroad are one of the most important motives for the internationalization
of production, empirical evidence that differences in the cost of R&D personnel are
a major driver for the internationalization of R&D is weak, however: compared to
other factors, cost advantages of R&D location are found to be pretty modest (Booz
Allen Hamilton and INSEAD 2006; Thursby and Thursby 2006; Kinkel and Maloca
2008; Belderbos et al. 2009; European Commission 2010). However, cost differ-
ences appear to gain importance when firms consider to locate R&D and innovation
activities in emerging economies, or when firms have to choose between two
similarly attractive locations (Booz Allen Hamilton and INSEAD 2006; Thursby
and Thursby 2006; Cincera et al. 2009).

The negative relationship between distance and any bilateral flows of either
goods, capital or people is one of the most robust findings in the rich strand of
literature emerging from the gravity model tradition. Traditionally, as emphasized
by Tinbergen (1962), distance is interpreted as a proxy for transportation costs or an
index of uncertainty and information costs firms have to shoulder when penetrating
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foreign markets. In the case of overseas R&D, these costs include additional costs
of coordinating geographically dispersed R&D activities, the costs of transferring
knowledge over distance, and a loss of economies of scale and scope when R&D
becomes more decentralized (Sanna-Randaccio and Veugelers 2007; Gersbach and
Schmutzler 2011). Related evidence is provided by Castellani et al. (2011) who
throw light on the specific role of distance for cross-border R&D FDI relative to
manufacturing investments. They emphasize that once social, cultural and institu-
tional factors like shared language or membership in the same regional trade
agreement are accounted for, the location of R&D labs abroad is independent of
geographic distance and therefore equally likely to be found close by or farther
away. This is taken as conclusive evidence for the limited role of transportation
costs but the pivotal role of uncertainty and prevailing informational barriers and
costs in deterring cross-border R&D FDI. In contrast, however, geographic distance
remains an important determinant for FDI in manufacturing or other types of FDI.

Supportive evidence also emerges for the importance of both cultural and
physical proximity between countries for cross-border flows and activities, as
typically proxied by common language or common borders, respectively. Such
proximity effects potentially counteract the effects of pure geographical distance
and thus have to be taken into account separately. In particular, lower cultural
barriers between culturally similar countries as well as shared borders between
countries often facilitate the flow of goods, capital or people. Strong cultural ties
between countries ease communication and the exchange of information and
knowledge across borders, rendering cross-border flows and activities easier and
less costly. Physical proximity reduces transportation and travel costs and therefore
further enhances cross-border flows. Various authors stress that foreign-owned
firms have to overcome additional institutional and cultural barriers, a disadvantage
that is known as the ‘liability of foreignness’ (Zaheer 1995; Eden and Miller 2004).
This concept captures foreign-owned firms’ lack of market knowledge but also their
lower degree of embeddedness in informal networks in their host countries, deci-
sive elements for foreign-owned firms when devising innovation strategies in terms
of whether and how to develop new or adapt existing products and/or processes to
local preferences and what resources to allot to these innovative activities. Sup-
portive empirical evidence is provided by Guellec and van Pottelsberghe de la
Potterie (2001) who use patent data for 29 OECD member countries to explain
prevailing patterns of cross-border ownership of inventions as well as of research
cooperation in the mid-1980s and the mid-1990s. They stress that both cross-border
ownership of patent inventions are more widespread among countries that share
common borders. Moreover, Guellec and van Pottelsberghe de la Potterie (2001)
also demonstrate that cross-border patenting and cooperation is significantly stron-
ger among culturally similar countries.

Finally, empirical evidence also points at the regional concentration or scientific
integration of cross-border inventive activities. As such, cross-border patenting is
higher among EU-15 countries (Dachs and Pyka 2010), while probably due to the
shared history and broad cultural similarities, cross-border ownership of inventions
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as well as of research cooperation was stronger among Nordic countries (Guellec
and van Pottelsberghe de la Potterie 2001).

From this survey a couple of hypotheses concerning R&D expenditure decisions
can be extracted which will be explored and tested below. First, market size as
proxied by GDP and GDP per capita of the host and home countries is an important
determinant of bilateral R&D activities. Second, concerning the quality and size of
skilled workforce both push and pull factors are at play with a lack of such workers
forcing firms to invest abroad whereas a skill workforce might attract R&D
activities in the host countries. Third, existing R&D efforts in both the host and
home countries are conducive to further bilateral R&D spending. Finally, there is a
set of variables capturing issues of distance and proximity: particularly, geograph-
ical distance is expected to correlate negatively with bilateral R&D expenditures
whereas factors like technological, cultural and physical proximity (measured
e.g. by language and border effects) are expected to correlate positively.

Some potential additional determinants emerge from the literature survey which
however could not explicitly be taken into account either due to high correlation
with other independent variables or a lack of data. These variables are labour costs
(which are highly correlated with GDP per capita) and measures of public policy
intervention. Instead, a number of dummies will be included to capture such effects.
The next section presents descriptive patterns of bilateral R&D expenditures and
discusses the sources of data that will be used for the econometric analysis.

10.3 The Role of Gravitational Forces

The ensuing analysis is based on a recently compiled database of bilateral business
R&D expenditure of foreign affiliates in the manufacturing sector of selected
OECD countries.' Bilateral R&D expenditure of firms from country A in country
B will be referred to as inward R&D expenditure or R&D expenditure of foreign
affiliates throughout the text.

Data on inward R&D expenditure cover the period from 2001 to 2007 and was
collected from national sources and compiled by the Austrian Institute of Technol-
ogy (AIT) and the Vienna Institute for International Economic Studies (wiiw) in
2011.% This data set was complemented by additional data from different sources:
standard gravity indicators such as distance (DIST;), common language

'The following OECD countries are covered: Austria (AUT), Belgium (BEL), Bulgaria (BUL)
Canada (CAN), the Czech Republic (CZE), Denmark (DNK), Estonia (EST), Finland (FIN),
France (FRA), Germany (GER), Greece (GRC), Hungary (HUN), Ireland (IRL), Japan (JPN),
the Netherlands (NLD), Norway (NOR), Poland (POL), Portugal (PRT), Romania (ROM), Spain
(ESP), the Slovak Republic (SVK), Slovenia (SVN), Sweden (SWE), Turkey (TUR), the UK
(GBR) and the US (USA).

2 Data was collected as part of the project ‘Internationalisation of business investments in R&D
and analysis of their economic impact’ and have been slightly revised and updated for this paper.
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(COMLANG ;) or common boarder (COMBORD ;) are taken from databases created
by CEPII. Information on real GDP, tertiary school enrolment rates, high-
technology exports and patent applications of resident and non-residents and total
populations in country i and j come from the World Bank’s World Development
Indicators (WDI). Finally, information on the technology distance between country
i and j was calculated with patent data provided by the EPO PATSTAT database.
This index measures correlations in the technological specialisation between coun-
tries. It is designed as a matrix of correlation coefficients such that the technology
distance proxy increases with a decreasing technological distance between two
countries. Descriptive statistics of all variables used in the estimations are provided
in Tables 10.4 and 10.5 in the Appendix.

Figures 10.1, 10.2, 10.3 and 10.4 below give a general picture of the magnitudes
of R&D internationalization, identify key players (Fig. 10.1) and attractive loca-
tions for R&D efforts of foreign affiliates (Figs. 10.2 and 10.3) and show the spatial
structure of the network of bilateral R&D expenditure between European countries
(Fig. 10.4). As such, they reveal important phenomena and underpin the hypotheses
that will be tested in the ensuing analysis.

A general picture of inward R&D expenditure in the manufacturing sector by
country of origin for key global players (that is the EU, the USA, Japan, China and
Switzerland) is drawn in Fig. 10.1 below. The size of each pie chart captures the
total amount of inward R&D expenditure in a country, while pie slices represent the
volume of inward R&D expenditure by country of origin. Arrows illustrate major
relations in inward R&D expenditure between countries. Figure 10.1 emphasizes
that, as major recipients of inward R&D expenditure, both, the USA as well as the
EU are the two key players in the process of internationalization of R&D. Specif-
ically, in 2007, inward R&D expenditure of US firms in the EU and inward R&D
expenditure of EU firms in the US together accounted for two-third of total inward
R&D expenditure in manufacturing worldwide.”

Moreover, Fig. 10.1 points at the strong mutual importance of both key players
for their respective inward R&D expenditure volumes: in 2007, US firms accounted
for more than 65 % of total inward R&D expenditure in manufacturing in the
EU. Similar, around 62 % of EU inward R&D expenditure in the manufacturing
sector stem from US firms located in the EU. In addition, Switzerland was the
second most important country of origin with around 16 % of all inward R&D
expenditure coming from Swiss firms located in the EU and around 22 % located in
the USA. In contrast, Japanese firms located either in the EU or the US accounted
for a comparatively small fraction of inward R&D expenditure only.

More recently, China emerged as a new attractive location for R&D efforts of
foreign-owned firms. While Chinese data is incomplete and plagued by methodo-
logical issues which render a comparison with data from OECD countries difficult,

3The European Union is considered as one entity, and intra-EU relationships (for example R&D of
German firms in France) are not taken into account.
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Fig. 10.1 Inward R&D expenditure between the EU, the US, Japan, China and Switzerland:
manufacturing only (2007, in EUR million at current prices). Reading note: Firms from the
European Union spent EUR 774 million on R&D in Switzerland in 2007; Swiss firms spent
EUR 2.470 million on R&D in the EU-27 in 2007. Swiss data include also the service sector; data
for China is estimated based on national sources and US and Japanese outward data (Source:
OECD, Eurostat, national statistical offices, own calculations)

data on R&D expenditure of wholly foreign-owned firms that operate in China
suggest around EUR 2.5 billion for the year 2007.

Next, Fig. 10.2 takes a closer look at R&D expenditure of foreign affiliates in the
US, by country of origin (between 1998 and 2010) and therefore identifies the
importance of inward R&D efforts of single EU countries in the US.* Specifically, it
depicts the simple country penetration, as the ratio of inward R&D expenditure
from a specific EU country to total inward R&D expenditure from the EU in the US
and points at the dominance of three EU countries only. As far back as 1998 and up
to 2006, affiliates of German, French and British firms accounted for around 80 %
of total inward R&D expenditure by EU firms in the US. Throughout, Germany
ranked first, followed by the UK and France. Only in 2006 did the UK overtake
Germany as the most important investor in R&D in the US. Hence, given that the
US is the world’s largest economy with a huge market and attractive sales poten-
tials, this supports the hypothesis that market size matters.

The opposite perspective is taken in Fig. 10.3 which depicts R&D expenditure of
US foreign affiliates located in the EU, by country of destination (between 1998 and

“Due to lacking data on outward R&D expenditure for most EU countries, Fig. 10.2 is based on US
inward data.
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Fig. 10.2 Countries of origin of inward R&D expenditure by EU firms in the US, 1998-2010.
Note: Total EU-27 includes all European companies except Swiss companies. (Source: OECD
based on US data by the US Bureau of Economic Analysis, own calculations)

2010) as the ratio of US outward R&D expenditure in a particular EU country to
total US outward R&D expenditure in the EU. It demonstrates that throughout the
period from 1998 to 2010, the UK and Germany were the two most important and
attractive individual EU countries for US R&D efforts, together absorbing more
than 50 % of all US outward R&D expenditure in the EU. However, starting in
2005, France, Italy and Spain appear to have lost some ground while other, smaller
Member States have become more attractive locations for US R&D efforts. The
importance of the two largest EU economies as key locations for US R&D efforts in
the EU underscores above hypothesis that ‘the size of the market matters’.

In addition, a comparison of Figs. 10.2 and 10.3 shows that US inward R&D
expenditure in the EU is much less concentrated in a few economies only than EU
inward R&D expenditure in the US, as small and medium-sized EU economies
(like Belgium, Ireland, the Netherlands or Austria) are comparatively more impor-
tant locations for R&D efforts of US companies than the US is for foreign affiliates
from small and medium-sized EU economies in the US.

Finally, Fig. 10.4 zooms in on the EU and depicts the spatial structure of the
network inward R&D expenditure among European countries. The edge size (that is
the link between countries) corresponds to the sum of inward R&D expenditure of
firms from country A in country B and vice versa® while the node size of each

3 This measure corresponds to weighted degree centrality in the social network analysis literature.
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Fig.10.3 Location of inward R&D expenditure of US firms in the EU,1999-2010. Note: * NMS-10/
12 comprises the Czech Republic, Estonia, Cyprus, Latvia, Lithuania, Hungary, Malta, Poland,
Slovenia and Slovakia (all from 2004 to 2007) and in 2007 Bulgaria and Romania also. (Source:
OECD based on US outward data by the US Bureau of Economic Analysis, own calculations)

country corresponds to the total sum of inward R&D expenditure in the country.
Nodes are located at the capital cities of each country.

The spatial network map for 2007 reveals a strong regional clustering of inward
R&D expenditure in the centre of Europe while the periphery is participating to a
lower degree. There are strong neighbouring effects between some countries, in
particular Germany, the Netherlands, Switzerland and Austria. Moreover, Germany
appears as the central hub, showing high interaction intensity, particularly with its
direct neighbours the Netherlands, Switzerland, Austria or France. Similar
neighbourhood effects are apparent for the UK or Spain, which show particular
high interaction intensity with Sweden and France or France and Belgium, respec-
tively. In contrast, Finland has a diverse and big set of partner countries, in terms of
absolute size, however, the interactions are comparatively low.

All in all, while New EU Member States (NMS) are in general connected to the
system of R&D investment in Europe, the magnitudes are comparatively low, with
the Czech Republic and Hungary showing the strongest R&D-based embeddedness.
This peripheral position of NMS may mainly be due to the low number of
multinational firms originating from there. Interestingly, business R&D investment
of NMS appears far less integrated than public research (including universities and
research institutions): Scherngell and Barber (2011) use information on interna-
tional collaboration patterns in the European Framework Programmes (FPs) and
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Fig.10.4 Inward R&D expenditure flows between European countries (2007). Note: The strength
of lines between country A and B corresponds to the sum of R&D expenditure of firms from
country A which operate in country B, and vice versa. The size of the node per country corresponds
to the sum of R&D expenditure of all foreign-owned firms in the country (Source: OECD,
Eurostat, national statistical offices, own calculations)

demonstrate that NMS seem to be rather well integrated in pan-European research
collaborations, while Fig. 10.4 highlights that this is less so for R&D efforts in the
industry sector.

10.4 Econometric Specification

In order to identify both home and host country characteristics that are either
conducive or obstructive to the process of R&D internationalization, a gravity
model approach is pursued. Generally, in the empirical literature, gravity models
are popular and well known for their success in explaining international trade flows
(see Anderson 1979 or Deardorff 1984 for a theoretical discussion and Breuss and
Egger 1999 or Helpman et al. 2008 for some empirical results).

In essence, the gravity equation for trade says that trade flows between two
countries are proportional to the two country’s size (as proxied by GDP) but



186 S. Leitner et al.

inversely related to the distance between them. Moreover, these models also often
account for physical or cultural proximity in terms of shared border, common
language or colonial history, respectively. Increasingly, gravity models are also
used to explain FDI flows (Brainard 1997; Jeon and Stone 1999 or Bergstrand and
Egger 2007), migration flows (Lewer and Van den Berg 2008) or flows of workers’
remittances (Lueth and Ruiz Arranz 2006) between countries.

More recently, gravity models also found their way into the analysis of cross-
border inventive activities (see, for example Guellec and van Pottelsberghe de la
Potterie 2001; Dachs and Pyka 2010 or Castellani et al. 2011). In some cases simple
gravity specifications might suffer from interdependencies such that FDI or also
R&D expenditures in one destination are not independent from activities in other
destinations (see e.g. Bloningen 2005, for a survey of FDI determinants). Further-
more in some cases more complex spatial interdependencies might matter as
e.g. market size of neighbouring countries or regions affect FDI or R&D decisions.
Given the limitations of the data at hand such effects can however not be considered
in the specification used in this paper.

Hence, following the tradition of the gravity literature, the following economet-
ric specifications are estimated to shed light on the roles of home and host country
characteristics in driving inward R&D expenditure:

INRD jjy=A+0t;-+a;+InDIST j+,COMLANG j+3;COMBORD + . ..

. +ﬁ41nGDPi[+ﬁ5lnGDPjt+5ZXZl:it+81:f[- (101)

And, if account is also taken of the level of economic development:

lI]RD,/t:lH—a,+a/+ﬂ1IHDIST,]+ﬂ2COMLANG,/+ﬂgCOMBORD,,+ e

GDP;, GDP;,
!
pop, | TP\ pop,

. —|—ﬂ4lnGDP,~,+ﬁ5lnGDPj,+ﬁ6ln +5ZXZ,:/‘;+8,‘]‘,,

(10.2)

where InRD;;, is the log of business R&D expenditure of foreign affiliates from
country j located in the host country i at time ¢.

InDIST;; is the log of the geographical distance between country 7 and j, mea-
sured as the simple distance between most populated cities (in km). As an index of
uncertainty and additional information costs (like additional costs of coordinating
geographically dispersed R&D activities or of transferring knowledge over dis-
tance), R&D expenditure of foreign-owned firms is expected to decline with
growing distance.

COMLANG;; and COMBORD); are dummies taking the value 1 if the two
countries i and j share a common language or border, respectively. Both are
included to capture cultural and physical proximity between country i and j and
are expected to foster R&D activities of foreign-owned firms. Specifically, strong
cultural ties between countries ease communication and the exchange of informa-
tion and knowledge across borders, while physical proximity reduces transportation
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costs, together rendering cross-border R&D activities comparatively easier and less
costly.

Furthermore, InGDP;; and InGDP, refer to the log of real gross domestic product
in country 7 and j, respectively and are proxies for the economic size of countries
i and j. Positive effects are expected, since, given their superior market potentials
and sales prospects that allow for an easy and quick recovery of sizeable R&D
outlays, larger markets are more attractive and conducive to R&D efforts of
foreign-owned firms.

Account is also taken of the role a country’s level of economic development has
in attracting business R&D expenditure of foreign-owned firms. As such, wealthier
economies (as proxied by their respective real GDPs per capita, namely In(GDP;,/
POP,,) for country i and In(GDP;,/POP;,) for country j) may not only have a higher
purchasing power, but may also be home to consumers with a more pronounced
‘love for variety’ (see Dixit and Stiglitz 1977) so that foreign-owned firms which
develop or produce novel products or processes consider economies with higher
standards of living more attractive markets with better profit perspectives.

In addition to above standard gravity model indicators, innovation related
indicators are included to throw light on their roles in driving the internationaliza-
tion of R&D. X_;;; is a matrix of z additional innovation related variables that are
expected to affect R&D expenditure of foreign affiliates to different degrees. In
particular, the analysis includes gross tertiary school enrolment rates in country
i and j to account for the pivotal role the quality of human capital plays for any
successful R&D efforts (ENR_TER). Specifically, empirical evidence highlights
that cross-country differences in the quality and size of a skilled workforce are an
important determinant of R&D internationalization: Lewin et al. (2009) show that
firms relocate product development to other parts of the world if faced with a
shortage of skilled science and engineering talent, while Hedge and Hicks (2008)
highlight that an abundance of graduates in science and technology and strong
scientific and engineering capabilities in a host country are able to attract business
R&D into a host country.

Moreover, to capture a country’s general level of inventiveness, the ratio of
patent applications of residents to patent applications of non-residents in country
i and j is included (PA_RATIO). Specifically, more inventive host countries are
attractive for foreign-owned firms seeking to harness prevailing local technology
and innovation capabilities for the development of new products or processes.

R&D activities of foreign-owned firms may also crucially depend on differences
in countries’ abilities to develop and produce internationally competitive high-
technology products. In particular, countries with strong indigenous R&D and
technological capabilities tend to specialize in high-technology industries and to
generate high-technology products (and services) that more easily withstand fierce
competition in the global arena. Hence, a high share of high-technology exports in
GDP is indicative of an internationally competitive indigenous R&D base foreign-
owned firms can harness to successfully develop new products and processes or to
adapt products and processes to local conditions and preferences. Therefore, high-
technology exports of country i and j (defined as the share of high-technology
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exports that are produced with high R&D intensity in total GDP) are included to
capture the quality of indigenous R&D and technological capabilities (HTX_SH).

Additionally, cross-country differences in the levels of technological develop-
ment may also affect the internationalization of R&D. Specifically, there has been a
long-standing debate in the FDI literature on the existence and extent of techno-
logical spillovers from foreign direct investments with, however, lacking consen-
sus. Some empirical studies lend support to the catching-up hypothesis put forward
by Findlay (1978) and find that technological spillovers increase with a widening of
the technology distance (e.g. Castellani and Zanfei 2003 or Peri and Urban 2006).
Others suggest the opposite such that only a narrow technology distance is condu-
cive to technological spillovers (e.g. Kokko et al. 1996 or Liu et al. 2000) as closer
levels of technological development across countries renders them technologically
more compatible, with sufficient absorptive capacities to benefit from each other’s
research efforts and successes. Hence, the technological distance between country
i and j is included, in terms of a correlation coefficient which, by construction, lies
between [0, 1] (TDIS). A high value of the coefficient indicates a narrow techno-
logical distance and similar specialization patterns between two countries.

Furthermore, dummies for EU membership are included which capture whether
only country i is a member of the EU, whether country j is a member of the EU only,
or whether both i and j are EU-member countries. This will show whether R&D
expenditure of foreign-owned firms is higher between EU member countries or
between EU and non-EU countries. Boschma (2005) refers to institutional proxim-
ity to capture that a common institutional set-up of two countries may facilitate
business activities of firms abroad.

Finally, Eq. 10.1 also includes host and home country fixed effects («; and a; for
country i and j, respectively) to account for country heterogeneity and year fixed
effects (4,) to take account of common macroeconomic shocks.

10.5 Results

Results are presented in Table 10.1 for different econometric specifications (see
Egs. 10.1 and 10.2) and estimation techniques: columns (1) to (3) provide results for
the basic specification as given in Eq. 10.1, while columns (4) to (6) also account for
the effect of the level of economic development on R&D expenditure of foreign-
owned firms as specified in Eq. 10.2. Moreover, from a methodological point of
view, columns (1) and (4) provide results for pooled OLS, columns (2) and (5) for
fixed effects for receiving and sending countries and columns (3) and (6) for
random effects specific for bilateral country pairs. The main shortcoming of the
pooled OLS approach lies in its inability to allow for heterogeneity of host and
home countries since it assumes that all countries are homogeneous. This is
remedied by fixed effects (column (2)) and random effects approaches (column
(3)) which explicitly account for the heterogeneity of both individual host and home
countries as well as for heterogeneity of host-home country pairs, respectively.
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As expected, the size of both home and host countries emerges as one key
determinant of R&D expenditure of foreign-owned firms. In particular, a 1 %
increase in the both host and home country’s market size is associated with a rise
in R&D expenditure of foreign affiliates by between 0.8 % and 1 %. However, size
effects slightly differ across countries and tend to be stronger in the host country.
This again provides supportive evidence of the ‘size matters’ hypothesis.

The analysis also demonstrates that apart from size, prevailing levels of eco-
nomic development matter for the scale of cross-border R&D expenditure. In
particular, cross-border R&D expenditure tends to be higher in wealthier econo-
mies: a 1 % rise in the host country’s GDP per capita increases R&D expenditure of
foreign-owned firms by around 0.7-0.8 % while a similar 1 % increase in the home
country’s GDP per capita has a slightly higher effect and is associated with an
around 1 % increase in R&D efforts of foreign-owned firms.

Moreover, light is shed on the particular roles additional innovation-related
indicators play for the process of R&D internationalization. Results in Table 10.1
highlight that human capital emerges as a non-negligible determinant of cross-
country R&D expenditure of foreign-owned firms. However, results also reveal that
underlying dynamics appear to differ across specifications. Specifically, column
(1) to (3) show that, in line with findings by Hedge and Hicks (2008), there is
evidence that a strong human capital base in the host country attracts business
R&D: a 1 % point increase in the host country’s tertiary enrolment rate is associated
with a 2.9 % increase in inward R&D expenditure. In contrast, results presented in
columns (4) to (6) stress that, once levels of economic development of both host and
home country are also taken into account, an abundance of human capital in the
home country appears to discourage R&D internationalization activities of foreign-
owned firms. This is in line with findings by Lewin et al. (2009) who emphasize that
firms tend to relocate product development to other parts of the world if faced with a
shortage of skilled science and engineering talent at home. However, diverging
results on the role of human capital for the process of R&D internationalization are
not — as it may seem — contradictory but suggest that, once levels of economic
development are also controlled for, the host country’s endowment with human
capital becomes of secondary importance while its level of development (together
with its economic size) assumes the role of main driver of the process of R&D
internationalization.

Similarly, there is evidence that a strong and internationally competitive indig-
enous R&D base in the host country is conducive to R&D expenditure of foreign-
owned firms. Hence, host countries that specialize in and generate internationally
competitive high-technology products are attractive R&D locations for foreign-
owned firms as they possess indigenous technological capabilities foreign-owned
firms can exploit for their innovative activities. In contrast, no decisive role can be
attributed to a country’s general level of inventiveness in fostering R&D expendi-
ture of foreign affiliates.

Finally, the results support the hypothesis concerning distance and proximity
related determinants. The analysis finds consistent evidence for the pivotal role
geographic distance between countries plays in curbing the process of R&D
internationalization. Specifically, inward R&D expenditure falls by between
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0.3 % and 0.8 % in response to a 1 % increase in distance between countries, where
distance captures additional coordinative costs of regionally dispersed R&D activ-
ities or diseconomies of scale and scope as a result of more decentralized R&D
activities.

Moreover, cultural proximity tends to be a conducive determinant of R&D
expenditure of foreign affiliates. This supports the ‘liability of foreignness’ hypoth-
esis formulated above: lower cultural barriers improve market knowledge and the
understanding of customer needs and facilitate communication and the exchange of
information and knowledge across borders. In a similar vein, physical proximity
also fosters the internationalization of R&D such that foreign affiliates located in
neighbouring countries tend to spend significantly more on R&D activities than
affiliates located farther away.

In line with results by Guellec and van Pottelsberghe de la Potterie (2001), the
analysis also emphasizes that technological distance matters. In particular, R&D
expenditure of foreign-owned firms appears to be higher between countries with
similar technological specializations which may indicate that R&D activities of
foreign-owned firms are attracted by potential spillovers in technological domains
similar to their own specialization. Finally, the analysis also demonstrates that
cross-border R&D expenditure tend to be regionally dispersed across EU as well
as non-EU member countries.

10.6 Summary and Conclusion

In the course of the last two decades, R&D expenditure of foreign-owned firms
increased tremendously, an indication that firms increasingly conduct research and
development outside their home countries. Against that backdrop, the analysis
identified important determinants of this more recent process of increased R&D
internationalization. It used a novel data set on R&D expenditure of foreign-owned
firms in the manufacturing sector of a set of OECD countries, spanning the period
from 2001 to 2007.

Generally, the results attribute a pivotal role to geographic distance in curbing
R&D expenditure of foreign-owned firms. This may be explained by the costs of
R&D internationalization (like additional costs of coordinating geographically
dispersed R&D activities or of transferring knowledge over distance) which tend
to noticeably increase with distance which, in turn, renders highly dispersed R&D
activities more costly and consequently less attractive. Moreover, cultural proxim-
ity which facilitates communication and the exchange of knowledge as well as
physical proximity which turns neighbouring countries attractive R&D hubs
emerge as important determinants of the process of R&D internationalization.
Furthermore, as expected, economic size and wealth of host and home countries
alike are key determinants which — in the light of larger markets with more
favourable sales prospects as well as wealthier consumers with a stronger and
more pronounced ‘love for variety’ — stimulate R&D efforts of foreign affiliates.
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In addition, R&D efforts of foreign-owned firms also respond to additional
scientific or technological capabilities. In particular, while some indication is
found that a strong human capital base in the host country attracts business R&D
of foreign-owned firms, there is additional evidence that an abundance of human
capital in the home country tends to curtail the relocation of innovative activities to
other parts of the world. Similarly, a strong and internationally competitive indig-
enous R&D base in the host country which foreign-owned firms can harness and
exploit for their own research activities is conducive to R&D expenditure of foreign
affiliates. Furthermore, R&D expenditure of foreign-owned firms is also signifi-
cantly stronger among countries with similar levels of technological development,
which renders technological compatibility among countries a non-negligible driver
of the process of R&D internationalization. Finally, some indication is found that
R&D expenditure of foreign-owned firms is regionally decentralized and not
concentrated within the EU.

These results have important implications for science, technology and innova-
tion policy. They point at areas where governments can take concerted action to
render their countries more attractive for R&D activities of foreign-owned firms.
These critical areas are science and education. Governments that succeed in
strengthening domestic research and development capabilities and in raising ter-
tiary enrolment rates may also succeed in attracting R&D of foreign-owned firms
(Veugelers et al. 2005; OECD 2008a; De Backer and Hatem 2010). This study
provides empirical evidence on how proximity among countries and country-
specific attributes like economic size, wealth, inventiveness, etc. affects the inten-
sity of cross-country R&D flows.

Though this sheds a first light on determinants on this increasingly important
phenomenon, analyses in this field still suffer from severe data limitations and
inconsistencies which have to be addressed and resolved in future research. Other
potentially important factors capturing R&D and innovation systems, interaction
with public R&D and institutions like universities and research institutions, market
structures and FDI flows, etc. would also have to be considered to give a more
complete picture of R&D flows across countries. Methodologically a comprehen-
sive panel data set should allow to further account for spatial dependencies and
spatial lag structures incorporating effects of neighbouring countries performance
and market potentials (see, e.g., Chap. 6 of this volume by Chun). Finally, R&D
patterns are largely determined by a few, potentially large, enterprises suggesting
that firm level data and firm as well as country case studies would be enlightening
though challenging avenues for future research (see Dachs et al. 2014, for some
detailed evidence).
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Table 10.4 Descriptive statistics

S. Leitner et al.

Variable Obs Mean  Std. Dev.  Min Max
Log RDij 1,054 2.47 2.89 —4.61 8.78
Log distance 1,054 7.34 1.09 4.09 9.32
Common language 1,054 0.09 0.29 0.00 1.00
Common border 1,054 0.15 0.36 0.00 1.00
Log RGDP HOST 1,054  12.40 1.72 873 16.23
Log RGDP HOME 1,054 13.03 1.56 9.04 16.23
Tertiary enrolment rate HOST 1,054 60.70 13.22 2450 93.80
Tertiary enrolment rate HOME 1,054 61.28 16.55 994  96.10
Ratio patent applications residents HOST 1,054 491 3.97 0.03 2392
Ratio patent applications residents HOME 1,054 4.83 3.56 0.04  28.75
Share high-tech exports HOST 1,054 4.43 3.24 024 16.19
Share high-tech exports HOME 1,054 4.83 3.59 0.14 3276
Technological distance 1,054 0.65 0.17 0.10 0.93
Table 10.5 Descriptive statistics — with levels of economic development

Variable Obs Mean Std. Dev. Min Max
Log RDij 1,054 2.47 2.89 —4.61 8.78
Log distance 1,054 7.34 1.09 4.09 9.32
Common language 1,054 0.09 0.29 0.00 1.00
Common border 1,054 0.15 0.36 0.00 1.00
Log RGDP HOST 1,054 12.40 1.72 8.73 16.23
Log RGDP HOME 1,054 13.03 1.56 9.04 16.23
Log RGDP pc HOST 1,054 9.51 0.75 7.46 10.62
Log RGDP pc HOME 1,054 9.97 0.56 6.12 10.87
Tertiary enrolment rate HOST 1,054  60.70 13.22 2450  93.80
Tertiary enrolment rate HOME 1,054 61.28 16.55 9.94 96.10
Ratio patent applications residents HOST 1,054 491 3.97 0.03 23.92
Ratio patent applications residents HOME 1,054 4.83 3.56 0.04 2875
Share high-tech exports HOST 1,054 4.43 3.24 0.24 16.19
Share high-tech exports HOME 1,054 4.83 3.59 0.14 3276
Technological distance 1,054 0.65 0.17 0.10 0.93
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Chapter 11

Joint Knowledge Production in European
R&D Networks: Results from a Discrete
Choice Modeling Perspective

Florian Reinold, Manfred Paier, and Manfred M. Fischer

Abstract The objective of this study is to explore the determinants of inter-
organizational knowledge generation within European networks of R&D collabo-
ration. It is argued that social capital is a key determinant for successful knowledge
generation. Thus, factors that influence the development of social capital like
geographical separation, or collaboration duration and intensity are expected to
have an impact on inter-organizational knowledge generation. Determinants of
inter-organizational knowledge generation are investigated by casting a binary
response model in the form of a latent regression — index function model. Units
of analysis are dyads of organizations that jointly participated in projects of the
Fifth EU Framework Programme [FP5]. The data used in this study derives from a
survey among FP5 participants and the EUPRO database.

Our findings suggest that crossing national border has a significantly positive
rather than negative effect on scientific knowledge generation [measured in terms
of reported co-publication activity]. This can be attributed to the participation rules
and proposal selection procedures of the Framework Programmes. Another impor-
tant result is that university dyads have the highest probability not only to generate
scientific knowledge jointly, but also to jointly generate knowledge that is com-
mercially relevant. In contrast, industry dyads show a low probability for both types
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of knowledge generation. This result is probably due to the fact that inter-organi-
zational knowledge generation entails disclosure of knowledge, which is actually a
task of universities but problematic for industry organizations.

11.1 Introduction

New growth theory suggests that innovation is the major engine of economic
growth and competitiveness (see, for instance, Romer 1990). Since scientific and
technological knowledge is regarded as the major input for innovation, the
competiveness of an economy depends on its ability to generate new knowledge.
Generation of knowledge is a social process and, therefore, the performance of an
economy to generate knowledge crucially depends on successful cooperation
between involved actors not only on the individual, but also on the organizational
level (see, for instance, Lundvall 1992). Since markets lack the necessary long-term
commitment for the transfer of tacit knowledge, networks are an increasingly
important mode of cooperation for inter-organizational R&D activities (DeBresson
and Amesse 1991; Powell and Grodal 2005). A major R&D network in Europe is
the network created by the European Framework Programmes [FPs]. The FPs are
the main instrument of the EU’s R&D policy and are designed to support collab-
orative R&D projects including actors from distinct organizational types and
different countries. Recently, several studies have been published in regard to
R&D partner choices (Autant-Bernard et al. 2007; Paier and Scherngell 2011;
Scherngell and Barber 2009) and joint knowledge generation (Hoekman
et al. 2009) in Europe and in the FPs.

This study contributes to the existing literature by investigating the determinants
of inter-organizational knowledge generation within the FP network. By using
dyads of organizations that jointly participated in a project of the Fifth Framework
Programme [FP5] as units of analysis, this study distinguishes itself from previous
studies by focusing on the organizational level and not on the regional level. The
data for carrying out this study is taken from a survey among FP5 participants and
the EUPRO database. Determinants of inter-organizational knowledge generation
are investigated by employing a binary response model derived from a latent
regression.

Although FP projects are supposed to generate scientific knowledge as a direct
output of the project, it is stipulated by the participation rules that the results should
be exploitable for commercial purposes. Thus, this study distinguishes between two
types of inter-organizational knowledge generation: scientific knowledge and com-
mercially relevant knowledge generation. Scientific knowledge generation is mea-
sured in terms of whether or not co-authored publications exist, while commercially
relevant knowledge generation refers to the fact that co-owned commercially
relevant outcome [e.g. co-owned patents] is reported.

The remainder of this chapter is organised as follows. Section 11.2 provides an
overview of the goals, participation rules and proposal selection procedures of the
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FPs because it can be assumed that they have an influence on the pattern of inter-
organizational knowledge generation. Section 11.3 identifies social capital and the
ability to coordinate researchers from different organizations as key determinants of
inter-organizational knowledge generation. Considerations are made how geo-
graphical separation and different organizational types of cooperation affect social
capital and coordination problems and thereby influence inter-organizational
knowledge generation. Section 11.4 describes the sample and the construction of
variables in detail. Section 11.5 outlines the econometric model and presents the
estimation results. Section 11.6 concludes.

11.2 The EU Framework Programmes

The FPs are recurrent mid-term research programmes that subsidy collaborative
R&D projects linking partners from different countries and organizational types.
The overall goal of the FPs is to strengthen the scientific and technological bases of
European industry and to enhance its international competitiveness. Moreover, the
FPs aim at fostering European market integration and regional income convergence
by establishing common technological standards, increasing the mobility of
researchers and promoting the dissemination of knowledge. Thus, the FPs can be
seen as an important instrument for the implementation of EU policy beyond the
area of science and technology (Stajano 2006, pp. 289-305). Since its establishment
in 1984, seven FPs have been launched. Despite shifting thematic areas and
instruments, the fundamental rationale of the FPs has remained unchanged, namely
to support collaborative, pan-European research that involves different actors from
scientific and the private sector (Roediger-Schluga and Barber 2007). This study
relies on the Fifth Framework Programme [FP5], 1999-2002.

There is a set of participation rules stipulated by the European Commission,
which shapes the structure of collaboration within FP5. The majority of proposals
were subject to the following participation rules (European Council 1998). First,
proposals had to be handed in by self-organised consortia. Second, the consortia
had to consist of at least two mutually independent legal entities. Third, the
consortia had to include legal entities from at least two different member states or
one member state and one associated state.

Proposals handed in were evaluated by a panel of independent experts on the
basis of a set of criteria defined by European Council decision. The final decision
about which projects were funded and which were rejected rested with the Euro-
pean Commission. Proposals should have met following criteria (European Com-
mission 2001). First, high quality of research and high degree of innovation;
second, added-value by carrying out the project at the European level and by
combining complementary expertise of different organizational types; third, con-
tribution to one or more EU policies, e.g. cohesion, or the integration of new
member states into the European Research Area; fourth, the usefulness and range
of applications, the quality of the exploitation plans and dissemination strategies



204 F. Reinold et al.

for the expected results; and finally the quality of the partnership, i.e. adequate
complementarity of the partners and a reasonable division of tasks within the
consortium.

Since the FPs involve subsidies for organizations from the private sector, there is
a potential for thwarting the competition policy of the EU. In order to avoid
distortion of the internal market, the FPs are restricted to pre-competitive research,
i.e. research that is sufficiently distant to the market in order to avoid distortion of
competition on product markets (Guzetti 1995, pp. 77-78). Some studies came to
the conclusion that organizations can materialise commercially relevant outcome
from participating in the FPs already in a short time after the termination of a FP
project because they link the FP project with other in-house projects (Guy
et al. 2005; Luukkonen and Hilikkd 2000; Matt and Wolff 2003). Moreover,
exploitation-related goals were the major motivation of industry organizations for
participating in FP5 (Guy et al. 2005). Thus, this study will not only focus on
scientific knowledge as an outcome of explorative research but also on commer-
cially relevant knowledge as an outcome of exploitative research.

11.3 Potential Determinants of Inter-Organizational
Knowledge Generation

Inter-organizational knowledge generation primarily involves sharing and combin-
ing knowledge that is held by [at least two] different organizations (Moran
and Ghoshal 1996). Two conditions have to be fulfilled in order that inter-organi-
zational knowledge generation in networks can take place. First, the organizations
must decide that they want to enter into a network relation in order to share and
combine knowledge. Second, knowledge has to be successfully shared and com-
bined so that novel knowledge [or a novel combination of already existing pieces of
knowledge] may be generated. The first condition boils down to the question about
determinants of collaboration choices, which has been already investigated for the
FPs (see, for instance, Autant-Bernard et al. 2007; Paier and Scherngell 2011), the
investigation of the second condition is the topic of this study.

Successful sharing and combining of knowledge depends on the willingness of
organizations to share knowledge and on the capacities of organizations to absorb
knowledge. The willingness to share and the capacity to absorb knowledge is
positively influenced by social capital. Social capital refers to resources that evolve
from networks of relationships over time by repeated interactions (Nahapiet and
Ghoshal 1998). Since social capital exists only between individuals, it cannot be
appropriated by one individual but is collectively owned (Coleman 1988). Social
capital is conducive for sharing and absorbing knowledge by providing resources
like trust, shared norms, shared goals, shared language and shared mental models.
Von Hippel (1987) observed in his qualitative study about US steel mini-mill
producers that knowledge was shared even with competitors because it was trusted
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that this will be rewarded in the long run by reciprocal behaviour. A quantitative
analysis about R&D consortia in Taiwan conducted by Lin et al. (2009) provides
evidence that trust, shared norms and shared goals influence knowledge transfer
positively.

Since transfer of tacit knowledge is costly, not all knowledge that might be
necessary for inter-organizational knowledge generation is shared (Grant 1996). A
great part of the necessary knowledge is combined by coordinating people, in
whom tacit knowledge is embedded, to build up inter-organizational capabilities
for knowledge generation. Building up inter-organizational capabilities for knowl-
edge generation is difficult since this requires complex modes of coordination.
Simple modes of coordination like coordination by rules and standards or coordi-
nation by planning are not feasible because generation of knowledge involves high
uncertainty and task interdependence (Kline and Rosenberg 1986; van de Ven
et al. 1976). Thus employees have to be coordinated by complex modes of coop-
eration like mutual adjustment and group meetings (Grant 1996). Resources derived
from social capital like shared goals or shared understandings facilitate complex
coordination problems (Hamaéldinen and Schienstock 2001).

11.3.1 Collaboration Duration and Intensity

Since social capital and common capabilities are built up by repeated interactions, it
can be expected that duration of collaboration and the intensity of collaboration are
crucial determinants for successful inter-organizational knowledge generation.

11.3.2 Geographical Separation

It is widely believed that geographical separation is detrimental to inter-organiza-
tional knowledge generation for three reasons (see Boschma 2005). First, geograph-
ical separation complicates repeated face-to-face communication which is regarded
as important for the development of social capital. Second, geographical separation
is often negatively correlated with cultural proximity which provides potential
research partners with an already existing stock of social capital in the form of
shared languages and shared norms. Third, geographical separation also makes
complex coordination more difficult since it complicates mutual adjustment and
group meetings (van de Ven et al. 1976). The majority of studies confirm the
negative relationship between geographical separation and the occurrence of
R&D collaboration (Katz 1994; LeSage et al. 2007; Maggioni and Uberti 2009;
Paier and Scherngell 2011; Scherngell and Barber 2009).

Some authors question that the proposition about the negative relationship
between geographical separation and inter-organizational knowledge generation
is universally valid. Bathelt et al. (2004) argue that firms are only innovative in the
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long run if they maintain a balance between geographically separated and geo-
graphically close R&D collaborations because geographical separated collabora-
tions are necessary to acquire new knowledge while close collaborations are
necessary to exploit new knowledge. Torre and Rallet (2005) point to the fact
that organizations need not be co-localised for close R&D collaboration since
people are mobile. Often, co-localisation is not necessary for the whole duration
of a joint research project and short- or medium term visits are sufficient. Moreover,
large organizations can afford to relocate a part of the R&D staff for the duration of
joint collaboration projects. Another differentiated view was presented by
Moodysson et al. (2008). They distinguish between two modes of inter-organiza-
tional knowledge generation: synthetic knowledge generation and analytical
knowledge generation. While geographical separation has a negative influence on
synthetic knowledge generation, it is less detrimental to analytical knowledge
generation. Analytical knowledge generation is highly formalized and is mainly
carried out by a process of theory-led deduction and subsequent hypothesis testing.
Since the primary type of knowledge involved is know-why, primarily codified
knowledge is exchanged. Often, activities related to analytical knowledge genera-
tion are only of sequential interdependence which entails only simple coordination
problems. An example for inter-organizational analytical knowledge generation is
the conducting of a clinic study by a research hospital on behalf of a pharmaceutical
research company.

Although geographical separation might complicate the development of social
capital and inter-organizational capabilities, we argue that the design of the FPs
offset the negative influence of geographical separation on inter-organizational
knowledge generation for four reasons. First, the division of labour in the FPs is
highly formalized because of pre-defined work packages, ex ante agreements on
meetings and milestones (Matt and Wolff 2003). Thus, it can be expected that
research conducted within the FPs resembles an analytical mode of knowledge
generation. Second, the participation rules and goals of the FPs ensure that the FPs
are an explorative and an international research network (see Sect. 11.2). Third,
since the support of the mobility of researchers is one of the main instruments of the
FPs, it can be expected that increased mobility of researchers substitute for a lack of
co-location of organizations. Fourth, the legal framework provided by the FPs
partly substitutes for a lack of cultural proximity and social capital (Luukkonen
2001).

11.3.3 Organizational Types of Cooperation

One objective of the FPs is to stimulate collaborations between the scientific sector
[in particular universities and public research organizations] and the private sector
[in particular R&D laboratories of industry organizations]. Since the scientific
sector and the private sector carry out complementary tasks within the innovation
process, interaction between the scientific sector and the private sector is regarded
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as conducive for innovation and economic development (see, for instance, Mowery
and Rosenberg 1993). However, collaboration between the scientific sector and the
private sector is often difficult since the two sectors pursue different goals and share
different cultures (Ponds et al. 2007). A major aim of scientific organizations is to
generate new knowledge and share this knowledge with the scientific community
by publishing in order to increase reputation. Private organizations, by contrast,
regard knowledge generation as a means to generate profit by reaping
Schumpeterian rents, and are, therefore, highly interested in keeping knowledge
secret. Moreover, they are to a lesser degree than scientific organizations interested
in explorative research activities and are more interested in exploiting existing
knowledge. Thus, although collaborations between scientific and private organiza-
tions are important for innovation and economic development, these collaborations
can be expected to have a low productivity for inter-organizational knowledge
generation because of differences in goals and culture.

11.4 Variables and Data

Two data sources are used in this study, namely, the EUPRO database and a survey
among FP5 participants conducted by Austrian Institute of Technology in 2007.
The EUPRO database is constructed and maintained by revising and standardizing
raw data obtained from the CORDIS project database. It contains detailed infor-
mation on funded projects and project participants of the EU Framework
Programmes (for the first six see Barber et al. 2008). The survey restricted its
population to projects involving less than 21 participants, which applies to roughly
97 % of all collaborative projects in FP5. 12,892 questionnaires were sent by email,
from which 8,534 were received. The survey resulted in 1,686 valid questionnaires.
Because a full data set in the EUPRO database is missing for 472 cases, only 1,214
questionnaires are used in this study.

Since the objective of this study is to explore the factors that are responsible for
the fact that collaboration results in successful inter-organizational knowledge
generation, the units of analysis has to be a form of inter-organizational collabora-
tion. Following previous studies, collaboration is considered if two organizations
participate in the same FP5 project (see, for instance, Autant-Bernard et al. 2007;
Paier and Scherngell 2011). Thus, the units of analysis in this study are dyads of
organizations that jointly participated in a FP5 project. The full sample consists of
7,776 dyads, which are formed by a set 3,343 distinct organizations that collabo-
rated in 861 distinct FP5 projects.

The area of analysis is formed by 23 countries. All EU members at the time of
the FP5 [i.e. the EU15] as well as the Central East European candidate countries
that joined EU in 2004 are included. Table 11.4 in the Appendix gives an overview
about the distribution of distinct organizations and participations, disaggregated by
country.
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11.4.1 Dependent Variables

Measuring knowledge generation is difficult since generated knowledge exists
initially in the mind of those who generated it and is thus not directly observable
(Fischer 2001). However, if the generated knowledge is sufficiently valuable, one
can expect that it materialises in observable outcomes. This study relies on survey
questions to capture outcomes of inter-organizational knowledge generation
through a dichotomous variable. Thus, joint scientific knowledge generation is
measured in terms of the occurrence of co-authored publications, and joint com-
mercially relevant knowledge generation is measured in terms of co-owned com-
mercially relevant outcome (e.g. co-owned patents). Each fifth dyad reported co-
authored publications; joint commercially relevant knowledge generation is by far
less common.

11.4.2 Independent Variables

In Sect. 11.3, we have argued that collaboration duration, collaboration intensity,
geographical separation and organizational types of cooperation influence inter-
organizational knowledge generation. Two variables are constructed to account for
the duration that is necessary for developing social capital: project duration and
previous collaboration. Project duration is measured in terms of the duration of the
FP5 project [in months] in which the members of the dyad jointly participated.
Previous collaboration is taken as a dummy variable into account that equals one if
the partners of the dyad had collaborated together in a previous FP project. Intensity
of collaboration is represented by the variable important research collaboration,
with information from the survey, and is designed as a dummy variable that equals
one if at least one dyad partner classified the other as an important research partner.

Two types of geographical barriers are included as independent variables: the
existence of national borders and of EU’s external border, designed as dummy
variables. The variable national border equals one if the organizations forming the
dyad are located in different countries. The variable EU’s external border equals
one if one organization of the dyad is located in the EU15 and the other in a Central
East European candidate country.

The sample includes four organizational types: industry organizations [including
consulting firms], universities, public research organizations and government orga-
nizations. Since there are few government organizations, only dummy variables for
combinations of universities, research organizations and industry organizations
were created. Thus, there are six dummy variables: university — university, univer-
sity — research organization, industry organization — university, industry organiza-
tion — industry organization, industry organization — research organization, research
organization — research organization. Dyads that include government organizations
take on the role of a default dummy.
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11.4.3 Control Variables

Collaboration is measured in terms of joint FP project participation. This measure-
ment approach works well for small FP projects, but in large FP projects it is
unlikely that every participant collaborated directly with every participant
(Fiirlinger 2010). In order to control for this shortcoming, the variable project
size, measured in terms of number of project participants, is included as a control
variable.

Table 11.1 summarises descriptive statistics about the variables. See also the
Appendix for the definition of the variables. Correlation analysis of the independent
variables revealed a phi coefficient of —0.45 between the intent to generate
scientific knowledge and the intent to generate commercially relevant knowledge.
All other correlations were far less problematic.

Although the focus of this study is on relational characteristics, internal capac-
ities of the organizations forming the dyad might also have an influence on
knowledge generation. Since no information like budget or R&D personnel is
available, proxy variables had to be used. EU funding devoted to the FP5 project,
in which the organizations of the dyad jointly participated, serves as proxy for the
monetary resources available for generating scientific or commercially relevant
knowledge. The commitment of an organization to scientific or commercially
relevant knowledge generation may have also an impact on the resources available
for these activities. Thus, we include two further dummy variables that take the
organizations’ motive for participating in FP5 into account. The first dummy
variable equals one if the intent of at least one member of the dyad was to generate
scientific knowledge. The second dummy variable equals one if the intent of at least
one member of the dyad was to generate commercially relevant knowledge. Both
dummy variables were taken from the survey.

11.5 The Econometric Model and Estimation Results

Since the dependent variable y* [inter-organizational knowledge generation] is
measured in terms of its dichotomous realisations y [observable outcomes], the
appropriate econometric model is a binary response model that can be derived from
a latent regression — index function model (Verbeek 2004, pp. 190-193). By
assuming a linear additive relationship between inter-organizational knowledge
generation and a set of explanatory variables we obtain the following latent
regression:

Y =pX+e (11.1)

where y* denotes a n-by-1 vector of latent indices of knowledge generation for
n = 7,776 dyad observations, X denotes a n-by-K matrix including a constant and
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Table 11.1 Descriptive statistics for the variables used

Project duration Project size [number of EU project funding

[in months] project members] [in million €]

Minimum 4 2 0.01
First quartile 24 8 0.41
Median 36 10 0.76
Third quartile 36 13 1.03
Maximum 60 20 3.23
Mean 31.34 10.74 0.80
Standard deviation 8.49 3.58 0.48
Frequency of the dummy variables in the sample

Previous collaboration (yes = 1) 22 %
Important research collaboration (yes = 1) 33 %
National border (yes = 1) 81 %
EU’s external border (yes = 1) 8 %
University — university (yes = 1) 13 %
University — research organization (yes = 1) 15 %
Research organization — research organization (yes = 1) 7 %
Industry organization — university (yes = 1) 18 %
Industry organization — research organization (yes = 1) 18 %
Industry organization — industry organization (yes = 1) 22 %
Intent to generate scientific knowledge (yes = 1) 58 %
Intent to generate commercially relevant knowledge (yes = 1) 46 %

K-1 explanatory variables, # denotes a K-by-1 vector of parameters to be estimated,
and ¢ a n-by-1 random error term symmetrically distributed about the mean. In this
context, #X is called the index function (Greene 2008, p. 776).

Inter-organizational knowledge generation is not directly observable but its
outcomes. Thus, we define a link between inter-organizational knowledge genera-
tion y* and the binary outcomes y.

_Jlify* >«

where a is a threshold that has to be surpassed in order that the generated knowledge
results in an observable outcome. Since the value of the threshold has only an
influence on the value of the intercept in the regression model, the threshold value is
set equal zero for sake of simplicity (Greene 2008, p. 776).

Binary response models derived from a latent regression explain the probability
of an event occurring dependent on the explanatory variables of the latent regres-

sion [X].
P(y=1|X) =F(pX) (11.3)

where F(.) denotes the cumulative distribution function of &. Consequently, the
latent variable approach leads to a binary choice model whose form depends upon
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the distribution that is assumed for € (Verbeek 2004, p. 192). Since we assume
e ~ N(0,1), a probit model is specified:

pX

P(y=1]X)=0(pX) = J \/%7 exp{—;tz}dt (11.4)

—00

where ®(.) denotes the standard normal cumulative distribution function. The
parameter estimates are derived by maximum-likelihood estimation (Greene
2008, pp. 777-T79).

11.6 Estimation Results

Table 11.2 presents the maximum likelihood [ML] parameter estimates for inter-
organizational knowledge generation; asymptotic standard errors are given in
parentheses. For scientific knowledge generation three different models were esti-
mated. The basic version [model 1] includes the full sample of 7,776 dyads, while
model 2 uses a sample of 2,627 dyads, which consist only of universities and
research organizations, and model 3 uses a sample of 4,729 dyads involving at
least one industry organization. The model for commercially relevant knowledge
generation uses the full sample of 7,776 dyads. The bottom of Table 11.2 provides
various model fit measures. The likelihood ratio statistic that compares the esti-
mated models with the constant-only null model indicates the significance of all
models at the 0.01 significance level.

As expected, intensity and duration of collaboration increase the probability of
both types of knowledge generation. Holding all other variables at their sample
mean, previous collaboration increases the probability that inter-organizational
scientific [commercially relevant] knowledge generation occurs by 8.3 [0.6]
percentage points. An increase of the project duration from 4 months [the mini-
mum in the sample] to 60 months [the maximum in the sample] increases the
probability that inter-organizational generation of scientific knowledge and com-
mercially relevant knowledge occurs by 13 and 5.3 percentage points, respec-
tively. Thus, relative to project duration, previous collaboration is less important
for generating commercially relevant knowledge than for generating scientific
knowledge.

The classification of a dyad as an important research collaboration by at least one
member of the dyad was used as a proxy for collaboration intensity. Table 11.2
shows that important research collaboration is by far the most important determi-
nant for scientific knowledge generation. If a dyad is classified to indicate important
collaboration the probability to generate scientific knowledge increases by 23.9
percentage points, on average. Important research collaboration has also a strong
influence on commercially relevant knowledge generation. The classification of a
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dyad partner as an important research partner increases the probability that the dyad
generates commercially relevant knowledge by 1.8 percentage points.

University—university dyads have the highest probability of generating scientific
knowledge, while dyads that involve only industry organizations the lowest.
Switching from a university—university dyad to a dyad that includes a research
organization and an industry organization decreases the probability of co-publish-
ing by 10.5 percentage points. The only two dyad types that have a significant [and
positive] impact on generation of commercially relevant knowledge are university-
university dyads and dyads that consist of a university and a research organization.
Thus, dyads involving industry organizations do not have a significant influence on
commercially relevant knowledge generation.

How can it be explained that industry organizational cooperation is not at the
forefront of commercially relevant knowledge generation? A likely explanation is
that industry organizations do generate commercially relevant knowledge, as found
by several studies (Guy et al. 2005; Luukkonen 2001), but not inter-organization-
ally because they fear negative knowledge spillovers of critical commercially
relevant knowledge. Since a priori it is not known which knowledge will be useful
to generate new knowledge, more knowledge is inevitably shared than necessary.
The goal of industry organizations may be not to generate knowledge inter-orga-
nizationally in FP projects, but instead to pursue unilateral learning strategies to
reduce knowledge spillovers and to maximise the benefit from FP participation (see
Matt and Wolff 2003).

In Sect. 11.3 it has been argued that crossing national border and EU’s external
border should not have a significant impact on inter-organizational knowledge
generation since the negative influence of geographical separation is offset by the
participation rules of the FPs. This serves to be valid for commercially relevant
knowledge generation, but not for scientific knowledge generation because both
border dummies are significantly positive, but the effect is relatively small. Holding
all other covariates at their sample means, crossing national border increases the
probability of a dyad to generate scientific knowledge inter-organizationally only
by two percentage points. Nevertheless, how can this small but significantly
positive influence of crossing national border be explained?

One possible explanation is that the factors described in Sect. 11.3 that were
expected to offset the negative influence of geographical separation on inter-
organizational knowledge generation appear stronger than expected for scientific
knowledge generation. Another possible explanation is that the significant and
positive national border dummy can be attributed to collaborations within the
scientific sector, while it is expected that industry organizations do not show an
inclination to co-author publications with foreign organizations. This explanation is
based on the consideration that researchers of universities and research organiza-
tions are more accustomed to work internationally and bound together by a com-
mon culture and shared mental models. As can be seen by the different significance
of the coefficients of national border in models 2 and 3, inter-organizational
generation of scientific knowledge is less sensitive to the presence of national
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borders within the scientific sector than between the scientific and the industrial
sector.

An unexpected result is that the coefficient of crossing EU’s external border is
insignificant in model 2 but significantly positive in model 3. In order to shed more
light on this result we have run a regression for scientific knowledge generation
including only dyads as observations that cross EU’s external border. The empirical
results of this model are presented in Table 11.3. It is striking that a dyad that
includes an industry organization located in a candidate country and a research
organization located in a member state has the highest impact on inter-organiza-
tional generation of scientific knowledge among all organizational types of coop-
eration since this kind of cooperation has only a medium impact in the full sample
model. This result can probably be attributed to the desire of industry organizations
in candidate countries to catch up with their counterparts in member states. A
research organization as partner can be regarded as a good choice since they are
more applied oriented than universities but less reluctant to share their knowledge
than industry organizations.

11.7 Summary and Conclusions

The objective of this study was to explore the determinants of inter-organizational
knowledge generation in the network created by the FPs. It was argued that social
capital is a key determinant for inter-organizational knowledge generation since
social capital provides necessary resources [e.g. trust, shared language, shared
mental models and shared goals] for knowledge exchange and facilitates the
development of inter-organizational capabilities for knowledge generation. Thus,
it was considered that factors influencing social capital are key determinants of
inter-organizational knowledge generation. In Sect. 11.3, four possible determi-
nants were identified: duration of collaboration, intensity of collaboration, geo-
graphical separation and the organizational types involved in inter-organizational
knowledge generation.

A binary response model was derived from a latent regression in order to
measure the impact of the above determinants on inter-organizational knowledge
generation. Dyads of organizations that jointly collaborated in a FP5 project were
used as units of analysis. Since inter-organizational knowledge generation is a
latent process that is not directly measurable, observable outcomes of inter-orga-
nizational knowledge generation were used as proxies. The occurrence of a co-
authored publication was used to measure scientific knowledge generation while
generation of commercially relevant knowledge was measured in terms of co-
owned commercially relevant outcome, like co-owned patents.

As expected, the results show that project duration and previous collaboration
have a positive and significant impact on inter-organizational generation of
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Table 11.3 ML estimates of the model for inter-organizational generation of scientific knowledge
across EU’s external border

Coefficient estimates

Variables [standard error in parentheses]
Constant —1.265""" (0.456)
Collaboration duration and intensity
Previous collaboration 0.294" (0.164)
Project duration [in months] 0.005 (0.010)
Important research collaboration 1.017" (0.135)
Organizational types of cooperation
Industry organization (C) — research 0.740™ (0.325)
organization (EU)
University (C) — university (EU) 0.576™ (0.290)
University (C) — industry organization (EU) 0.546" (0.297)
University (C) — research organization (EU) 0.543"  (0.312)
Research organization (C) — university (EU) 0.300  (0.304)
Research organization (C) — research 0.041 (0.313)
organization (EU)
Research organizations (C) — industry —0.148  (0.309)
organization (EU)
Industry organization (C) — university (EU) —0.102 (0.413)
Industry organization (C) — industry —0.430 (0.345)

organization (EU)
Control variables

ootk

Project size [number of participants] —0.078" " (0.022)
Intent to generate scientific knowledge 0.297"  (0.156)
Intent to generate commercially relevant knowledge —0.052  (0.154)
EU project funding [in millions of euros] 0.421""" (0.158)
Log-likelihood —262.700
BIC 0.978
Likelihood ratio test (df = 16) 157.041""

Dependent variable is inter-organizational scientific knowledge generation. Probit transformation
of the dependent variable was used. The model includes a sample of 650 dyads that cross EU’s
external border. The default dummy for organizational types of cooperation are dyads including
government organizations. (C) denotes that the corresponding organization was located in a
candidate country; (EU) denotes that the corresponding organization was located in the EU; "
significant at the 0.01 significance level, ™" significant at the 0.05 significance level, * significant at
the 0.1 significance level

scientific and commercially relevant knowledge. Intensity of collaboration has the
strongest positive impact on scientific knowledge generation and has also a strong
and positive influence on the generation of commercially relevant knowledge.
Typically, geographical separation is expected to have a negative influence on
inter-organizational knowledge generation because it curbs the development of
social capital. In this study we expected that national border and EU’s external
border have an insignificant influence on inter-organizational knowledge genera-
tion because the negative effect of geographical separation on inter-organizational
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knowledge generation is offset by the participation rules and proposal selection
procedures of the FPs. This assumption was confirmed for commercially relevant
knowledge generation but not for scientific knowledge generation.

An unexpected result is that dyads involving industry organizations are not
significant in regard to generation of commercially relevant knowledge. This result
can probably be explained by the fact that inter-organizational knowledge genera-
tion entails disclosure of knowledge, which is problematic for industry organiza-
tions. As expected, dyads involving universities and research organizations are at
the forefront in regard to inter-organizational scientific knowledge generation.

The results of this study are in accordance with the goals of the Framework
Programmes. Inter-organizational knowledge generation is not curbed by national
border. On the contrary, universities and research organizations use the FPs rather
for international than national scientific knowledge generation. Moreover, as
intended by the European Commission, the FPs are an appropriate instrument to
introduce new members into the European Research Area. Fears that the FPs
contradicts the competition rules of the internal market can be allayed since
industry-industry collaborations in the FPs do not have a significant influence on
inter-organizational commercially relevant knowledge generation.

Acknowledgements This chapter reports results of research carried out in the framework of the
Innovation Economics Vienna — Knowledge and Talent Development Program.
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Country Organizations (in %) Participants (in %)
Germany 14.9 17.5
Italy 13.6 134
United Kingdom  13.2 13.1
Spain 11.9 10.2
France 11.7 11.9
Greece 4.4 44
Netherlands 4.2 5.1
Belgium 3.7 34
Sweden 3.3 3.7
Portugal 3.1 2.5
Austria 2.8 3.0
Denmark 2.6 2.4
Finland 2.1 2.6
Poland 1.8 1.6
Ireland 1.6 1.3
Czech Republic 1.6 1.2
Hungary 1.3 1.0
Slovenia 0.6 0.5
Slovakia 0.4 0.4
Lithuania 0.3 0.3
Latvia 0.3 0.2
Luxembourg 0.2 0.2
Estonia 0.2 0.1
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Table 11.5 Definitions of variables

F. Reinold et al.

Scale of Data
Variable name measurement Description source
Dependent variables
Generation of scien-  Dichotomous 1 if the members of the dyad co-authored a Survey
tific knowledge scientific publication
Generation of com- Dichotomous 1 if the members of the dyad co-own commer- Survey
mercial knowledge cially relevant outcome
Collaboration duration and intensity
Project duration Ordinal Duration of the project in which the members of EUPRO
the dyad jointly participated (months)
Previous collaboration Dichotomous 1 if the two organizations of the dyad have Survey
already collaborated in previous FPs
Important research Dichotomous 1 if at least one member of the dyad stated that Survey
collaboration the other was an important collaborator
Geographical separation
National border Dichotomous 1 if the organizations forming the dyad are EUPRO
located in different countries
EU’s external border  Dichotomous 1 if one organization is located in the EU15 and EUPRO
the other in a CEE candidate country
Combinations of organization types
University —university Dichotomous 1 if both organizations of the dyad are EUPRO
universities
University — research ~ Dichotomous 1 if one organization is a university and the EUPRO
other is a research organization
Industry— university Dichotomous 1 if one organization is a university and the EUPRO
other is an industry organization
Industry— industry Dichotomous 1 if both organizations are industry EUPRO
organizations
Industry— research Dichotomous 1 if one organization is an industry organization EUPRO
and the other a research organization
Research— research Dichotomous 1 if both organizations of the dyad are research EUPRO
organizations
Control variables
Project size Ordinal Number of participants of the project EUPRO
Intent to generate sci- Dichotomous 1 if the motivation of at least one member of the Survey
entific knowledge dyad was scientific research
Intent to generate Dichotomous If the motivation of at least one member of the Survey
commercial dyad was commercial knowledge
knowledge
EU project funding Continuous  EU funds (measured in million EUR) allocated EUPRO

to the project
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Chapter 12

Multilateral R&D Collaboration: An ERGM
Application on Biotechnology

Cilem Selin Hazir

Abstract This chapter presents an empirical study on formation of multilateral
R&D collaboration networks among organizations. The objective of the study is to
investigate how geography and heterogeneity in institutional types affect the way
organizations come together around consortiums to perform R&D. It makes use of
data on project proposals submitted to the 7th Framework Program (FP) in the field
of biotechnology to construct a two-mode network. It employs extensions of
exponential random graph models (ERGM) (Frank and Strauss, J] Am Stat Assoc
81(395):832-842, 1986; Wasserman and Pattison, Psychometrika 61(3):401-425,
1996, for affiliation networks (Wang et al., Soc Netw 31:12-25, 2009). The results
show that higher education institutions and research institutions tend to show higher
connectivity and hence bridge learning across consortiums. Furthermore, organi-
zations located in the core European countries tend to participate in the same
consortium and these consortiums tend to be small in size. Finally, homophily in
institutional types and network effects do not affect the formation process.

12.1 Introduction

Increasing tendency to collaborate in research and development (R&D) (Hagedoorn
2002; Wuchty et al. 2007) created an interest in network formation processes in the
field of geography of innovation to achieve a better understanding on knowledge
flows in space. R&D collaborations sometimes involve more than two parties,
which come together in the form of a consortium to perform R&D, and give rise
to multilateral R&D collaboration networks. So far these networks have been
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analysed assuming that they can be considered as a collection of independent
bilateral interactions (Autant-Bernard et al. 2007; Paier and Scherngell 2008;
Scherngell and Barber 2009; Scherngell and Lata 2013). Nevertheless, multilateral
interactions — i.e. the dependencies among bilateral interactions- might also be
important for the formation process, and hence for understanding how these
networks modify spatial diffusion of knowledge.

First of all, in multilateral R&D collaboration networks (multilateral networks
from now on) when a new consortium is created, a number of organizations get
connected to each other all at once. So far, while some empirical evidence has
shown that pairwise collaboration decisions are positively related to spatial prox-
imity; how it affects composition of consortiums is not obvious. In other words,
whether consortiums are created among proximate organizations or they bring very
distant and very proximate organizations together such that the spatial advantages
and disadvantages are offset is not clear.

Second, within consortiums organizations start exchanging and co-creating
knowledge not only pairwise, but also group-wise. From a spatial point of view,
on the one hand this implies that at least some part of knowledge flows simulta-
neously in a geography defined by the location of consortium members. On the
other hand, it means that through multilateral collaboration some locations gain the
ability to learn collectively. Then, it is a matter of interest to know whether there are
any spatial limits for simultaneous knowledge flows/collective learning to occur.

Third, consortium members, who benefit from these knowledge flows, differ in
terms of the mix of functions (Hekkert et al. 2007) that they perform in their local
innovation system. Hence they differ in their aims and ways of doing research. How
they come into groups and how they differ in their networking activity might inform
policy-makers in developing tools to promote regions to get involved in such
networks.

Therein, in this chapter we depart from the prior work by focusing on the
following two questions: (1) how do different types of organizations (with different
functions) come together around research consortiums in different combinations?
(2) Is the creation process of these consortiums free of spatial constraints or not?
Mainly two strands in the literature suggest some explanations to these questions.
Network formation literature suggests that benefits that are obtained through
partners of partners affect collaboration decisions (Jackson and Wolinsky 1996).
Hence it emphasizes the role of network effects that result from network configu-
ration and position of an agent in the network. On the other hand the proximity
literature (Boschma 2005) suggests that the degree of similarity in exogenous
attributes of agents affect collaboration decisions. While both strands of work
provide a basis to answer to the above-mentioned question, none of them particu-
larly address how group wise collaboration emerges. Thus, there exists a challenge
to bridge pairwise explanations to the consortium level.

We try to handle this challenge by employing a random graph approach and
working on a two-mode representation of the network, and we address the above-
mentioned questions in the field of biotechnology. The chapter will proceed with a
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Fig. 12.1 Four perspectives to study participation decisions

discussion on processes that underlie formation of multilateral networks. Then, an
empirical application will be presented based on data on project proposals submit-
ted to the 7th Framework Program (FP) in the field of biotechnology.

12.2 Formation of Multilateral R&D Collaboration
Networks

The smallest building block of a multilateral network is a tie that is realized when
an organization decides to participate in a consortium. The determinants of this
decision might be considered through four perspectives. First, as illustrated in
Fig. 12.1a this decision might be taken into account in isolation from other
participation decisions that make up the network, and the determinants that affect
the interest of an organization in engaging in collaborative research might be
studied. Second, a decision maker might be considered in isolation with other
decision makers and a single decision made by the decision maker might be
addressed within its portfolio of participations (Fig. 12.1b). Third, a consortium
might be studied in isolation with other consortiums and attention might be
accorded on determinants of co-participations (Fig. 12.1c¢). Finally, the intersection
of the perspectives adopted in Fig. 12.1b, ¢ might be considered, and hence the
network effects that stem from interconnectedness of projects is not neglected
(Fig. 12.1d).

12.2.1 The General Interest in Collaborative Research

An organization might engage in multilateral research collaborations for a variety
of reasons, not all of which are necessarily technology related, like improving its
business network or brand reputation. However, due to the fact that the context of
collaboration is to perform R&D and this context is framed by a project plan, one
could assume a stronger role for technology related aspects and describe the main
motivation of organizations as accession to information, knowledge, skills, ideas,
financial capacity to realize a research that they could not achieve on their own, etc.
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The level of this interest, however, may vary across different types of organizations
as the mixes of functions (Hekkert et al. 2007) that they perform in their local
innovation system and their primal roles are different. To illustrate, the interest of a
public organization in engaging in research consortiums as a user or a regulator is
different than a higher education institution which seeks scientific or technological
advancements. Furthermore, profit-seeking organizations have appropriability con-
cerns as accession has some associated risks about control on the knowledge
(Cassiman and Veugelers 2002).

Another reason why organizations might differ in their interest in participating in
research consortiums might be the specific role played by some local features. On
the one hand, a high level of industrialization and a well-organized local innovation
system in a place might promote systemic learning and interactive innovation
(Cooke et al. 1997) and hence foster the absorption capacity of organizations
(Cohen and Levinthal 1990). On the other hand, the development of all regional
forms of information services, technological transfer institutions and communica-
tion infrastructure may enhance the circulation of information and hence favour the
ability of agents to be aware of potential consortiums.

12.2.2 Organization’s Portfolio of Participations

Each participation decision individually offers an organization some change in the
scope of knowledge and in absorption capacity. However, a portfolio of participa-
tions suggests more than the bare sum of these individual benefits. The reason is
that organizations do not learn in each consortium in an isolated manner but
sometimes cross-learning occurs across a number of projects (Powell et al. 1996).
Hence, participation decisions made by an organization may depend on each other
regarding the cross-learning opportunities that they suggest.

They depend on each other also because they are competing for the limited
amount of resources that an organization can allocate for (collaborative) research.
Even, they may compete on the same unique resource like staff. Hence, one can
consider two main forces operating on the formation of an organizations portfolio
of participations. While the former promotes multiple participations due to cross-
learning opportunities, the latter dampens it due to cost/resource considerations.

Following the discussion in the previous section, it may be argued that the net
effect of these two forces might differ for different types of organizations. On the
one hand the tendency for multiple participations might be weaker for organizations
with appropriability concerns as cross-learning might also have a negative impact
on the control over knowledge. One the other hand, different types of organizations
might differ in their financial or cross-learning capacity.
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12.2.3 Determinants of Co-participations

In the two preceding sections determinants of participation decisions have been
addressed as if organizations make their participation decisions in isolation from
other organizations and hence independently. However, proximities or competition
motivations may drive organizations to make their participation decisions together
and hence join a consortium in pairs, triples, quadruples, etc. These effects could be
considered in at least two headings.

First, some proximity dimensions (Boschma 2005) may breed co-participations
via facilitating acquaintance or awareness on possible partners and consortiums.
One such dimension is the social proximity, as social ties can play a role to convey
information on possible consortiums, ease getting into contact with them, and hence
result in socially proximate organizations participating in the same consortium. For
the case of bilateral collaboration networks this role has been studied theoretically
and empirically for different types of networks (Van der Leij et al. 2006; Jackson
and Rogers 2007; Fafchamps et al. 2010; Autant-Bernard et al. 2007). In the same
manner, organizational proximity in the form of hierarchies or in weaker forms like
supply-chain relations or business networks may facilitate co-participations.
Finally, geographical proximity may give rise to co-participations as organizations
nearby can be identified more easily.

However, regions differ in terms of the extent that the systemic mechanisms that
foster circulation of information are developed and the extent that their constituents
interact (Cooke et al. 1997). Hence, local features, an integral part of geographical
proximity, might matter in generation of co-participations. In this regard, space
might also be related to network formation as a “setting structure”, which refers to
an exogenous constraint on possible tie dependencies (Pattison and Robins 2002).

Second, all types of proximities may breed co-participations as optimal levels of
proximity between organizations may enhance joint learning (Boschma and
Frenken 2009). For instance, some level of institutional proximity means closeness
in standards, routines, values, goals, languages, etc., which in turn act as enabling
mechanisms that provide stable conditions for interactive learning (Boschma 2005).
Similarly, geographical proximity may promote transmission of knowledge via
facilitating face-to-face contacts (Feldman and Florida 1994; Anselin et al. 2000).
It may also facilitate cross-fertilization of ideas (Feldman and Florida 1994),
pointing out a higher potential of knowledge that could be co-created. In addition
to that, it may enable timely inflows of information (Feldman 1993) or reduce the
cost of collaboration (Hoekman et al. 2009). Beside these, social proximity can
enhance joint learning as social ties may involve trust. Trust is argued to be a factor
that enables the exchange of ideas more openly (Zand 1972), reduces the cost of
negotiations and conflicts (Zaheer et al. 1998), allows transmission of more private
and tacit knowledge as compared to the information exchanged at arm’s-length
(Uzzi 1996). Concerning that a consortium may itself create/reinforce social ties
and/or trust, social proximity may also result in new co-participations with old
partners in new projects. Finally, some level of cognitive proximity might suggest a
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reason for co-participations as sharing common knowledge is a pre-requisite for
understanding each other and benefit from collaboration (Frenken et al. 2007;
Nooteboom et al. 2007). In the case that consortium members preserve their
medium of interaction by engaging collectively in new consortiums, this may
increase their cognitive proximity. While this may improve “relative absorptive
capacity” (Lane and Lubatkin 1998) among members, it may also decrease the level
of heterogeneity in knowledge levels and reduce the propensity to generate inno-
vation (Cowan et al. 2007).

12.2.4 Network Effects

In a multilateral collaboration network, consortium members’ portfolios of partic-
ipations enable organizations to access information created in other consortiums, in
which they are not directly involved. In the literature, there are several models that
relate these network effects to the network formation. One of these models is the
connections model (Jackson and Wolinsky 1996; Bala and Goyal 2000), which
shows that, for different parameter values, these network effects lead to different
stable and/or efficient network configurations.

Similarly, the preferential attachment model by Barabasi and Albert (1999)
based on degree affinity as the driver of network formation, meaning that an
agent prefers establishing a link with the agent who has the largest number of direct
connections (i.e. degree). They show that degree affinity is capable of explaining
the formation of the networks defined by the World Wide Web or patent citations.

12.3 Data

The empirical application is based on the European Commission records on project
proposals submitted to the 7th Framework Program (FP7). The raw data is obtained
from the French Ministry of Higher Education and Research and processed by
EuroLIO (European Localized Innovation Observatory). This processing is called
“disambiguation” since the variety in the way an organization is registered in the
database results in ambiguity in organizations that is to be corrected for.

The empirical application that will be presented in the sequel is based on a
sample that is obtained by selecting the information on small or medium-scale
focused research project proposals in the field of “life sciences, biotechnology and
biochemistry for sustainable non-food”. The sample includes 237 project proposals
which have been proposed to the Commission in response to five different calls
issued yearly from 2007 to 2011, and 1313 unique participants.
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12.4 The Model

Exponential random graph models (known also as p* models and in short ERGM)
(Frank and Strauss 1986; Wasserman and Pattison 1996) are based on the idea that
the observed network is just one realization of all possible pattern of connections
among a given set of nodes. The closed form of the model can simply be considered
as a probability density function which expresses the probability of a network
configuration in terms of some sub-structures, called local configurations or
neighbourhoods, it contains. These local configurations may be as simple as
edges or they can be more complex sub-structures resulting from dependencies
among ties (Frank and Strauss 1986; Pattison and Robins 2002). Table 12.1 pro-
vides illustrations of some of these local configurations.

In this study, we employed the extension of ERGM for two-mode networks
(Wang et al. 2009). A two mode network consists of two types of nodes and ties
among them. The first set of nodes (A = {1,2,3, .. .,n}) refers to organizations, and
the second set (P = {1,2,3, ...,m}) refers to projects. Hence in such a network, the
set () of all possible ties connecting each organization in A to each project in P is
of size n x m. We denote a possible tie between an organization i € A and a
project j € P, with the random variable Yj;, which takes a value of 1 if the tie is
realized (meaning that organization i participated in project j), and O otherwise.
Then we express the overall network as a random vector (Y), which is a collection
of tie variables, i.e. Y = {Yj;j}. We denote a realization of this vector with y =
{yij}. Then, the general form of ERGM can be expressed as follows (Robins
et al. 2007)":

P(Y=y)= @) eXP{EQ:nQ gQ(y)}

Where the following definitions hold:

* P(Y =y) is the probability of observing a particular network y.
e 3 is a normalizing constant assuring the probabilities given by this distribution
adds up to 1:

=Y (eXpZnQ gQ(y)>
¥\ g

!For statistical and mathematical foundations of ERGM, readers are referred to the joint proba-
bility of a Markov field or the extensions of statistical mechanics of Gibbs to the study of networks
by Park and Newman (2004), and to the Hammersely Clifford Theorem (Besag 1974) proving the
Gibbs-Markov equivalence.
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Table 12.1 Summary of hypothesis and variable definitions
Local
Perspective Variables configuration
q o© - Edges Number of participations Oo—10
VL
o " P Edges by HES  Number of participations by higher {1

Edges by PRC

The general interest in
collaborative research Edges by REC

Edges by EU1S5

Edges by core

Organization

2-stars
HES 2-stars
Organization’s portfolio
of participations PRC 2-stars
REC 2-stars

Project 2-stars

Co-participa-
tions with
Determinants of HES

co-participations

Co-participa-
tions with
PRC

Co-participa-
tions with
REC

Homophily
HES
Homophily
PRC
Homophily
REC

Co-participa-
tions with
core

Homophily
core

education institutions (HES)
Number of participations by private
institutions (PRC)

Number of participations by
research institutions (REC)
Number of participations by EU15

members
Number of participations by the
core

Number of 2 paths connecting two
projects

Number of 2 paths connecting two
projects and centred at HESs
Number of 2 paths connecting two
projects and centred at PRCs
Number of 2 paths connecting two
projects and centred at RECs

Number of 2 paths connecting two
organizations

Number of 2 paths connecting two
organizations, one of which is a
HES

Number of 2 paths connecting two
organizations, one of which is a
PRC

Number of 2 paths connecting two
organizations, one of which is a
REC

Number of 2 paths connecting two
HESs

Number of 2 paths connecting two
PRCs

Number of 2 paths connecting two
RECs

Number of 2 paths connecting two
organizations, one of which is
in core regions

Number of 2 paths connecting two
organizations located in core
regions
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(continued)
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Table 12.1 (continued)

Local
Perspective Variables configuration

Continuity of  Actor centred alternating k-two
consortiums paths

3-paths Number of three paths ij

Network effects

* 1)g is the parameter corresponding to the local configuration (neighborhood) Q.

* go(y) is the network statistic corresponding to the local configuration (neigh-
borhood) Q. In a homogeneous model, for a given type of neighborhood Q,
which is a collection of isomorphic neighborhoods ¢, go(y) is given by:

2o =>_{ I

qeQ \Yie q

There are two main techniques suggested to estimate ERGM: Pseudo-Likeli-
hood Estimation (PLE) (Straus and Ikeda 1990) and Markov Chain Monte Carlo
Maximum Likelihood Estimation (MCMCMLE) (Snijders 2002). Wang
et al. (2009) provide empirical evidence on the performance of the two estimation
techniques for two-mode networks and propose that MCMCMLE should be the
preferred method for two-mode networks.

12.5 The Variables

The four perspectives discussed in Sect. 12.2 are brought together in an ERGM
specification that includes 21 variables (local configurations) (Table 12.1). The
general interest in collaborative research is reflected by the edge configuration,
which has been differentiated with respect to the institutional types of organizations
and their locations. The effect of an organization’s portfolio of participations is
represented by organization 2-stars. The effect of co-participation drivers is mea-
sured by two different local configurations. The first one refers to project 2-stars,
which has been differentiated with respect to institutional types and location. The
second one refers to the continuity of consortiums that stems from the effect of trust
and network learning. Finally, 3-paths are included to account for the network
effects.
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In studying the geographical dimension of the network a core-periphery per-
spective is adopted due to some data limitations and data characteristics. On the one
hand, regional information conforming to NUTS classification is not available for
all countries. Even for countries for which NUTS classification is available,
regional information is not available for finer levels like NUTS3 level for all. On
the other hand, co-participation decisions are not free of the design of FP program,
since the Commission sets the minimum conditions” on the consortium size and
location of participants. Hence, an analysis of the geographical dimension of co-
participations at a fine regional level is imperfect. For this reason, the following
neighbouring countries, which include regions with very high concentrations of
people, finance, and industry, is called the “core”: Austria, Belgium, France,
Germany, Italia, the Netherlands, Switzerland, and United Kingdom. Being located
in the core has been introduced as an attribute on organizations.

Finally, EU-15 membership has been introduced as an attribute on organizations
as a control variable to account for the fact that over time the FP participation rules
have changed, as well as set of countries that are called member states and associate
states. While countries that have long been a member of the European Union have
not been affected from these changes in participating in FP, those countries that
have more recently joined to EU have been concerned with these changes.

12.6 Estimation Results and Discussion

The model specification that includes all the variables defined above has failed to
converge.”* According to Handcock (2003) this might result from two reasons.
First, it may be the case for this specification that MLE does not exist at all. Letting
g(y) be the network statistics corresponding to the neighborhoods used to express
the model, letting C be the convex hull of {g(y): y € Y}, and letting rint(C) and rbd
(C) be the relative interior and relative boundary of C, respectively; Handcock
(2003) states that a necessary and sufficient condition for the MLE not to exist is
that (g(y"hs)) € rbd(C). Second, the Monte Carlo process used to approximate the
MLE might have a difficulty to produce realizations that cover the observed values
of the network statistics. In our case, manipulations on the chain length or step size

2Regulation (EC) No 1906/2006; Article 5/(1) states that “at least three legal entities must
participate, each of which must be established in a Member State or associated country, and no
two of which may be established in the same Member State or associated country”.

3 All estimations are carried out using “BPNet”, which is an extension of the PNet programme
(Wang et al. 2006) and bases on MCMCMLE technique.

* Convergence is measured by t-ratios calculated to check whether the estimate of the parameter
vector is capable of producing a graph distribution centered at the observed network (Wang
et al. 2009). Snijders (2002) suggests that if the absolute value of t-values for all local configu-
rations (l7ol) are less than or equal to 0.1 convergence is excellent; if 0.1 < Ifpl < 0.2, it is good,
else if 0.2 < ltyl < 0.3 convergence is fair.
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did not improve convergence. MCMLE process kept yielding different parameter
vectors which generate networks far from the observed one.

Table 12.2 presents four specifications that converged excellently. Among these,
Model 4, which includes all variables except for continuity of consortiums and
shows the highest goodness of fit, will be interpreted in the sequel. The rest of the
models given in the same table are provided for comparison purposes as they
represent gradually increasing the number of perspectives adopted to study the
participation decisions (recall Fig. 12.1).

Model 4 shows that among five different types of organizations the general
interests of higher education institutions (HES), private enterprises (PRC), and
research institutions (REC) in collaborative research differ from each other and
differ from that of the reference categories; i.e.; public organizations (PUB) and
other types of organizations (OTH). The parameter estimates for these variables are
all negative indicating that network configurations with fewer edges are more
probable. Equivalently, complete or very dense network configurations are not
probable. This is in line with the fact that in the network under study only 0.69 %
of all possible ties are realized.

Model 4 reveals that the behaviour of organizations located in EU-15 countries
is different than that of others. The positive and statistically significant parameter
estimate for edges by EU-15 members indicates that network configurations with
more edges by EU-15 agents are more probable. Accounting for the effect of EU-15
membership, being located in the core does not have an additional effect on the
general interest in collaborative research.

Model 4 also suggests statistical evidence on the effect of dependence among
two participation decisions given by the same organization on network formation.
While these dependencies are statistically significant for all types of organizations,
their magnitudes and directions are different. The parameter estimate for organiza-
tion 2-stars shows the effect of the dependence among two participation decisions
for the reference categories; i.e.; public organizations (PUB) and other types of
organizations (OTH). The negative sign of the estimate for 2-stars and the negative
parameter estimates for edges jointly show that organizations labelled as the
reference category tend to create fewer edges at the aggregate level and also at
the individual level they tend not to have star behaviour. On the other hand, as
compared to the reference category a more negative estimate for edges by HES and
a more positive estimate for HES 2-stars indicate that networks, where higher
education institutions have single participations, are less likely; in contrast net-
works, where higher education institutions behave like stars, are more likely.
Similar arguments hold for research institutions and private enterprises as well.

In addition to these Model 4 suggests that location of participants plays a role in
composition of the consortiums. The negative and statistically significant parameter
estimate for “co-participations with core” suggests that the more crowded that a
consortium with a participant located in the core gets, the less likely the resulting
network configuration. However, the positive and statistically significant parameter
estimate for “homophily core” reveals that more likely networks are those including
a higher number of co-participations by organizations that are located in the core.
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Hence, these two parameters point out to a process where organizations in the core
tend to collaborate with each other and in small consortiums.

In Model 4, all variables investigating the institutional aspect of consortium
composition are found to be statistically insignificant. This result complies with the
fact that in the observed network almost all consortiums are heterogeneous in terms
of institutional types.

Also, the parameter estimate for 3-cycles, which are included in the model to test
for network effects, is found to be statistically insignificant. This may be due to the
fact that an organization’s access to information on another’s portfolio of partici-
pations is rather limited in real life. A study by Lhuillery and Pfister (2011), which
investigates the awareness of firms of potential ties among their main direct partners
by using French data, supports this by revealing that firms are aware of less than
half of the potential indirect ties among their direct partners.

Finally, the goodness of fit of the models is assessed through a simulation study.
According to results Model 4 performs better than the other models and reproduces
many network properties successfully or almost successfully according to the
heuristic criteria suggested by Wang et al. (2009). However, it suffers in replicating
the clustering in the network. Despite the fact that the level of clustering is very low,
it is a matter of fact that the model is not well-performing in this aspect.

12.7 Conclusions

In this study, multilateral R&D collaboration is considered as a particular context to
study network formation since the nature of tie formation and knowledge flows in
such networks differ from those in bilateral collaboration networks. The two main
goals of the study was to explain how organizations come into groups to conduct
research given that they are institutionally different and whether these grouping are
free of spatial constraints or not. To answer these questions, mainly, insight
provided by network formation theory and the proximity literature is moulded
with social network analysis approach. Some empirical results are obtained based
on the data on proposals submitted to FP7 on a specific sub-theme by using a two-
mode representation of the multilateral network and exponential random graph
models.

One set of conclusions that can be derived from this study helps understanding
how different types of organizations behave in terms of connectivity/multi-connec-
tivity and how they come into groups. The results suggest that higher education
institutions and research institutions tend to participate in a higher number of
consortiums. On the one hand this means that they constitute the main bridges for
learning across consortiums. On the other hand, it may also point out to a difference
in capacity or interest to create and maintain a portfolio of participations. Although
the statistical evidence brought by this study is not sufficient to draw general policy
recommendations, both of these interpretations might be informative for regional
policy makers in designing customized policy tools to increase their regions’
involvement in collaboration networks.
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Apart from that, the findings show that homophily in institutional types does not
play a role in the construction of consortiums. This points to a favourable situation
in FP7 biotechnology network, as it means that knowledge can possibly diffuse
among different parts of the economy. Hence, the underlying network formation
processes in FP7 in biotechnology result in a network configuration that permits
collective learning by different economic actors.

Another set of conclusions comprise the spatial dimension of these networks.
The findings suggest that organizations located in the core European countries tend
to participate in the same consortium and these consortiums tend to be small in size.
This means that collective learning tend to localize in a continuous corridor in the
Western Europe and joint learning capabilities of organizations located in this
corridor is being reinforced. Furthermore, the results reveal that the interest in
multilateral collaboration is higher for organizations located in EU-15 as compared
the others. From a spatial point of view, this means a difference between Western
and Eastern Europe in benefiting from flows in multilateral R&D collaboration.

From an analytical and methodological point of view, the results obtained
through a core-periphery perspective — i.e. participation decisions depend on each
other in the core, and the effect of this dependence is statistically significant-
highlights an important point. On the one hand this illustrates the additional
explanatory capacity suggested by models relaxing the tie independence assump-
tion. On the other hand, it shows that geography might not only play a role by
affecting the utility out of collaboration but also as a delimiter/facilitator of tie
dependence.

Nevertheless, the results obtained in this study lack further research effort in several
aspects. First, due to data limitations the geographical dimension has been addressed
at a broad scale. Second, in this study the network is studied with a static approach as if
all consortiums are created simultaneously. Obviously, an organization makes some
of its decisions simultaneously, and some at different time instances. Hanneke
et al. (2010) and Krivitsky and Handcock (2010) proposed temporal extensions to
ERGM to study the evolution as a discrete time Markov process. In this respect, we
think that integrating a temporal aspect to study the evolution of a multilateral
cooperation network is promising. Third, the study draws empirical evidence from a
single technological field. Whether the network formation dynamics in biotechnology
apply to other fields remains as an issue to be addressed.
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